
Lecture 18: Dynamic Programming

Agenda:

• Matrix-chain multiplication

• Dynamic programming: more characteristics

• Longest common subsequence

Reading:

• Textbook pages 323 – 324, 331 – 350

1

Lecture 18: Dynamic Programming

Matrix-chain multiplication:

• Input: matrices A1, A2, . . ., An with dimensions d0×d1, d1×d2,
. . ., dn−1 × dn, respectively.

• Output: an order in which matrices should be multiplied such
that the product A1 × A2 × . . . × An is computed using the
minimum number of scalar multiplications.

• Fact: suppose A1 is a d1 × d2 matrix, A2 is a d2 × d3 matrix.

Then A1 and A2 is multipliable, and B = A1 × A2 can be
computed using d1 × d2 × d3 scalar multiplications.

• Example: n = 4 and (d0, d1, . . . , dn) = (5,2,6,4,3)

Possible orders with different number of scalar multiplications:

((A1 ×A2)×A3)×A4 5× 2× 6 + 5× 6× 4 + 5× 4× 3 = 240
(A1 × (A2 ×A3))×A4 5× 2× 4 + 2× 6× 4 + 5× 4× 3 = 148
(A1 ×A2)× (A3 ×A4) 5× 2× 6 + 5× 6× 3 + 6× 4× 3 = 222
A1 × ((A2 ×A3)×A4) 5× 2× 3 + 2× 6× 4 + 2× 4× 3 = 102
A1 × (A2 × (A3 ×A4)) 5× 2× 3 + 2× 6× 3 + 6× 4× 3 = 138

• An equivalent question: How we put the parentheses?

2

Lecture 18: Dynamic Programming

2nd implementation — recursion:

• Cannot afford exhaustive enumeration ...

• Try recursion?

– M(i, j) — the minimum number of scalar multiplications
needed to compute product Ai ×Ai+1 × . . .×Aj (i ≤ j)

– M(i, j) =
{

0, if i = j
mini≤k<j{M(i, k) + M(k + 1, j) + di−1dkdj}, if i < j

– for example,

M(1,4) = min

{
M(1,1) + M(2,4) + d0 × d1 × d4
M(1,2) + M(3,4) + d0 × d2 × d4
M(1,3) + M(4,4) + d0 × d3 × d4

}
– pseudocode:

procedure M(i, j)

if i = j then
return 0

else
cost←∞
for t← i to j − 1 do

new ← M(i, t) + M(t + 1, j) + di−1 × dt × dj

if new < cost then
cost← new

return cost

– running time: n = |j − i|

T (n) =

{
c1, when n = 0

c2 +
∑n−1

j=0
(T (j) + T (n− j − 1)) , when n ≥ 1

3

Lecture 18: Dynamic Programming

2nd implementation — recursion (cont’d):

• Solving the recurrence:

T (n) = c2 +
∑n−1

j=0
(T (j) + T (n− j − 1))

= c2 + 2
∑n−1

j=0
T (j)

=
(
c2 + 2

∑n−2

j=0
T (j)

)
+ 2T (n− 1)

= T (n− 1) + 2T (n− 1)

= 3T (n− 1)

= 32T (n− 2)
= . . .
= 3nT (0)

= c13n

• So, recursion running time T (n) ∈ Θ(3n)

• Again, lots of repeated function calls ...

• Try memoization — 3rd approach

An exercise !!!

4

Lecture 18: Dynamic Programming

4th implementation — dynamic programming:

• Pseudocode:

procedure dpM(1, n)

for i← 1 to n do
M(i, i)← 0

for shift← 1 to n do
for i← 1 to n− shift do

j ← i + shift
cost←∞
for t← i to j − 1 do

new ←M(i, t) + M(t + 1, j) + di−1 × dt × dj

if new < cost then
cost← new

M(i, j)← cost
return M(1, n)

• Trace the example n = 4 and (d0, d1, . . . , dn) = (5,2,6,4,3):

�
�

�
�

�
�

�
�

�
�

��

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@
@

@
@

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

A1 A2 A3 A4

1

2

3

4 1

2

3

4

j i

5

Lecture 18: Dynamic Programming

4th implementation — dynamic programming:

• Pseudocode:

procedure dpM(1, n)

for i← 1 to n do
M(i, i)← 0

for shift← 1 to n do
for i← 1 to n− shift do

j ← i + shift
cost←∞
for t← i to j − 1 do

new ←M(i, t) + M(t + 1, j) + di−1 × dt × dj

if new < cost then
cost← new

M(i, j)← cost
return M(1, n)

• Trace the example n = 4 and (d0, d1, . . . , dn) = (5,2,6,4,3):

�
�

�
�

�
�

�
�

�
�

��

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@
@

@
@

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

A1 A2 A3 A4

1

2

3

4 1

2

3

4

j i

0 0 0 0

60 48 72

88 72

102

@@I ���

@@I

6

Lecture 18: Dynamic Programming

4th implementation — dynamic programming:

• Pseudocode:

procedure dpM(1, n)

for i← 1 to n do
M(i, i)← 0

for shift← 1 to n do
for i← 1 to n− shift do

j ← i + shift
cost←∞
for t← i to j − 1 do

new ←M(i, t) + M(t + 1, j) + di−1 × dt × dj

if new < cost then
cost← new

M(i, j)← cost
return M(1, n)

• Trace the example n = 4 and (d0, d1, . . . , dn) = (5,2,6,4,3):

�
�

�
�

�
�

�
�

��

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@

@
@

@
@
@

@
@@

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�

�
�

�
�

�

�
��

A1 A2 A3 A4

1

2

3

4 1

2

3

4

j i

0 0 0 0

60 48 72

88 72

102

m-matrix

�
�

�
�

�
�

�
�

��

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@

@
@

@
@
@

@
@@

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�

�
�

�
�

�

�
��

A1 A2 A3 A4

1

2

3

4 1

2

3

4

j i

− − − −
1 2 3

1 3

1

s-matrix

• The innermost for loopbody takes constant time ...

So dpM(n) worst case running time ∈ Θ(n3).

7

Lecture 18: Dynamic Programming

Dynamic programming key characteristics:

• Recurrence relation exists

• Recursive calls overlap

• Small number of subproblems

• Huge number of calls

• Avoid re-computation

• Bottom-up computation

• Top-down trace

Other problems suited to Dynamic programming:

• String matching: Longest Common Subsequence (next lec-
ture)

• Optimal binary search tree construction (textbook page 356)

• All pair shortest paths in (di)graphs (CMPUT 304)

• Optimal layout in VLSI (could be a thesis topic :-))

8

Lecture 19: Dynamic Programming

Some more observations on Matrix-chain multiplication:

• Suppose we have computed the order of multiplications

• Suppose the last matrix multiplication is between (A1×. . .×Aj)
and (Aj+1 × . . .×An)

• Then the suborders obtained from the original order

are optimal orders for the subproblems, respectively (why ???)

• We call this ... optimal substructures

• Equivalently, we need to

– compute optimal orders for

∗ multiplying matrices A1, A2, . . . , Aj

∗ multiplying Aj+1, Aj+2, . . . , An,

∗ for every index j = 1,2, . . . , (n− 1)

– combine them into an order to multiplying A1, A2, . . . , An

– choose the best order out of the (n− 1) possibilities

9

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem:

Definitions: – Sequence/string:

dynamicprogramming is a sequence over the English alpha-
bet

– Base/letter/character

– Subsequence:

the given sequence with zero or more bases left out

e.g., dog is a subsequence of dynamicprogramming

WARNing: bases appear in the same order, but not nec-
essarily consecutive

– Common subsequence

– LCS problem: given two sequences X = x1x2 . . . xn and
Y = y1y2 . . . ym, find a maximum-length common subse-
quence of them.

• The LCS problem has the “optimal substructure” ...

– if xn is NOT in the LCS (to be computed), then we only
need to compute an LCS of x1x2 . . . xn−1 and y1y2 . . . ym

...

– similarly, if ym is NOT in the LCS (to be computed),
then we only need to compute an LCS of x1x2 . . . xn and
y1y2 . . . ym−1 ...

– if xn and ym are both in the LCS (to be computed), then
xn = ym and we need to compute an LCS of x1x2 . . . xn−1

and y1y2 . . . ym−1;

and then adding xn to the end to form an LCS for the
original problem

10

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem (cont’d):

• Therefore,

Letting DP [n, m] to denote the length of an LCS of X and
Y , then it is equal to

max length of

{
LCS(x1x2 . . . xn−1, y1y2 . . . ym),
LCS(x1x2 . . . xn, y1y2 . . . ym−1),
LCS(x1x2 . . . xn−1, y1y2 . . . ym−1) + ‘x′n, if xn = ym

• Correctness

• In general, let DP [i, j] denote the length of an LCS of x1x2 . . . xi

and y1y2 . . . yj.

• Recurrence:

DP [i, j] = max

{
DP [i− 1, j],
DP [i, j − 1],
DP [i− 1, j − 1] + 1, if xi = yj

• Base cases ???

11

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem (cont’d)

— solving the recurrence:

• Divide-and-Conquer running time: Ω(3min{n,m})

• Memoization: Θ(n×m)

• Dynamic programming:

Order of computations ???

procedure dpLCS(X, Y)

n← length[X]
m← length[Y]
for i← 1 to m do

DP (i,0)← 0
for j ← 0 to n do

DP (0, j)← 0
for i← 1 to m do

for j ← 1 to n do
if xi = yj then

DP [i, j]← DP [i− 1, j − 1] + 1
else if DP [i− 1, j] ≥ DP [i, j − 1] then

DP [i, j]← DP [i− 1, j]
else

DP [i, j]← DP [i, j − 1]
return DP [n, m]

12

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem (cont’d):

• Correctness

• Can return an associated LCS ... trace back

• Running time: Θ(n×m)

There are n×m entries each takes constant time to compute.

Can be reduced to Θ(n× m
logm

) (CMPUT 606)

• Space requirement ... Θ(n×m)

Can be reduced to Θ(min{n, m}) (CMPUT 606)

• Applications:

– Human (and other species) Genome Project

– Detecting cheating :-)

13

Lecture 19: Dynamic Programming

Have you understood the lecture contents?

well ok not-at-all topic

� � � matrix-chain multiplication

� � � deriving recurrence

� � � avoiding re-computation

� � � top-down — memoization

� � � bottom-up — dynamic programming

� � � optimal substructure

� � � LCS computation

14

