Lecture 17: Dynamic Programming

Agenda:

- Matrix-chain multiplication

Reading:

- Textbook pages 323-324, 331-339

Lecture 17: Dynamic Programming

Matrix-chain multiplication:

- Input: matrices $A_{1}, A_{2}, \ldots, A_{n}$ with dimensions $d_{0} \times d_{1}, d_{1} \times d_{2}$, $\ldots, d_{n-1} \times d_{n}$, respectively.
- Output: an order in which matrices should be multiplied such that the product $A_{1} \times A_{2} \times \ldots \times A_{n}$ is computed using the minimum number of scalar multiplications.
- Fact: suppose A_{1} is a $d_{1} \times d_{2}$ matrix, A_{2} is a $d_{2} \times d_{3}$ matrix.

Then A_{1} and A_{2} is multipliable, and $B=A_{1} \times A_{2}$ can be computed using $d_{1} \times \overline{d_{2} \times d_{3} \text { scalar multiplications. }}$

- Example: $n=4$ and $\left(d_{0}, d_{1}, \ldots, d_{n}\right)=(5,2,6,4,3)$

Possible orders with different number of scalar multiplications:

$$
\begin{array}{ll}
\left(\left(A_{1} \times A_{2}\right) \times A_{3}\right) \times A_{4} & 5 \times 2 \times 6+5 \times 6 \times 4+5 \times 4 \times 3=240 \\
\left(A_{1} \times\left(A_{2} \times A_{3}\right)\right) \times A_{4} & 5 \times 2 \times 4+2 \times 6 \times 4+5 \times 4 \times 3=148 \\
\left(A_{1} \times A_{2}\right) \times\left(A_{3} \times A_{4}\right) & 5 \times 2 \times 6+5 \times 6 \times 3+6 \times 4 \times 3=222 \\
A_{1} \times\left(\left(A_{2} \times A_{3}\right) \times A_{4}\right) & 5 \times 2 \times 3+2 \times 6 \times 4+2 \times 4 \times 3=102 \\
A_{1} \times\left(A_{2} \times\left(A_{3} \times A_{4}\right)\right) & 5 \times 2 \times 3+2 \times 6 \times 3+6 \times 4 \times 3=138
\end{array}
$$

Lecture 17: Dynamic Programming $1^{\text {st }}$ Matrix-chain multiplication - brute force:

- a.k.a. exhaustive enumeration ...
- Let M_{n} be the number of multiplication orders

How big is M_{n} ???

n	1	2	3	4	5	6	\ldots
M_{n}	1	1	2	5	14	42	\ldots

- Let C_{n} be the number of binary trees each with
- $(n+1)$ leaves, n non-leaves
- each non-leaf has two children (full binary tree)
- for example $n=3$:

Lecture 17: Dynamic Programming

C_{n} :

- These binary trees can be constructed recursively:
root: 1 non-leaf
left subtree: $j+1$ leaves j non-leaves
right subtree: $n-j$ leaves $n-j-1$ non-leaves

$$
j=0,1,2, \ldots,(n-1)
$$

- C_{n} - Catalan numbers (1983)
- $C_{n}= \begin{cases}1,{ }^{1,1} & \text { when } n=0,1 \\ \sum_{j=0}^{n-1} C_{j} \times C_{n-j-1}, & \text { when } n \geq 2\end{cases}$
- $M_{n+1}=C_{n}=\frac{\binom{2 n}{n}}{n+1} \approx \frac{4^{n}}{n \sqrt{\pi n}}$
- Therefore, the brute force approach running time $\in \Omega\left((4-\epsilon)^{n}\right)!!!$

$2^{\text {nd }}$ implementation - recursion:

- Cannot afford exhaustive enumeration ...
- Try recursion?
- $M(i, j)$ - the minimum number of scalar multiplications needed to compute product $A_{i} \times A_{i+1} \times \ldots \times A_{j}(i \leq j)$
$-M(i, j)= \begin{cases}0, & \text { if } i=j \\ \min _{i \leq k<j}\left\{M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right\}, & \text { if } i<j\end{cases}$
- for example,

$$
M(1,4)=\min \left\{\begin{array}{l}
M(1,1)+M(2,4)+d_{0} \times d_{1} \times d_{4} \\
M(1,2)+M(3,4)+d_{0} \times d_{2} \times d_{4} \\
M(1,3)+M(4,4)+d_{0} \times d_{3} \times d_{4}
\end{array}\right\}
$$

- pseudocode:
procedure $\mathrm{M}(i, j)$
if $i=j$ then
return 0
else
cost $\leftarrow \infty$
for $t \leftarrow i$ to $j-1$ do
$n e w \leftarrow \mathrm{M}(i, t)+\mathrm{M}(t+1, j)+d_{i-1} \times d_{t} \times d_{j}$ if new < cost then cost $\leftarrow n e w$
return cost
- running time: $n=|j-i|$

$$
T(n)= \begin{cases}c_{1}, & \text { when } n=0 \\ c_{2}+\sum_{j=0}^{n-1}(T(j)+T(n-j-1)), & \text { when } n \geq 1\end{cases}
$$

- Solving the recurrence:

$$
\begin{aligned}
T(n) & =c_{2}+\sum_{j=0}^{n-1}(T(j)+T(n-j-1)) \\
& =c_{2}+2 \sum_{j=0}^{n-1} T(j) \\
& =\left(c_{2}+2 \sum_{j=0}^{n-2} T(j)\right)+2 T(n-1) \\
& =T(n-1)+2 T(n-1) \\
& =3 T(n-1) \\
& =3^{2} T(n-2) \\
& =3^{n} T(0) \\
& =c_{1} 3^{n}
\end{aligned}
$$

- So, recursion running time $T(n) \in \Theta\left(3^{n}\right)$
- Again, lots of repeated function calls ...
- Try memoization - $3^{\text {rd }}$ approach An exercise !!! $4^{\text {th }}$ implementation - dynamic programming:
- Pseudocode:
procedure $\operatorname{dpM}(1, n)$

```
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    M(i,i)\leftarrow0
for shift }\leftarrow1\mathrm{ to }n\mathrm{ do
    for }i\leftarrow1\mathrm{ to }n\mathrm{ -shift do
        j\leftarrowi+shift
        cost }\leftarrow
        for }t\leftarrowi\mathrm{ to }j-1\mathrm{ do
            new}\leftarrowM(i,t)+M(t+1,j)+\mp@subsup{d}{i-1}{}\times\mp@subsup{d}{t}{}\times\mp@subsup{d}{j}{
            if new < cost then
                cost \leftarrow new
            M(i,j)\leftarrowcost
return M(1,n)
```

- Trace the example $n=4$ and $\left(d_{0}, d_{1}, \ldots, d_{n}\right)=(5,2,6,4,3)$:
 $4^{\text {th }}$ implementation - dynamic programming:
- Pseudocode:
procedure $\operatorname{dpM}(1, n)$

```
for }i\leftarrow1\mathrm{ to }n\mathrm{ do
    M(i,i)\leftarrow0
for shift }\leftarrow1\mathrm{ to }n\mathrm{ do
    for }i\leftarrow1\mathrm{ to }n\mathrm{ -shift do
            j\leftarrowi+shift
            cost }\leftarrow
            for }t\leftarrowi\mathrm{ to }j-1\mathrm{ do
                new}\leftarrowM(i,t)+M(t+1,j)+\mp@subsup{d}{i-1}{}\times\mp@subsup{d}{t}{}\times\mp@subsup{d}{j}{
                if new < cost then
                cost \leftarrow new
            M(i,j)\leftarrowcost
return M(1,n)
```

- Trace the example $n=4$ and $\left(d_{0}, d_{1}, \ldots, d_{n}\right)=(5,2,6,4,3)$:

Lecture 17: Dynamic Programming $4^{\text {th }}$ implementation - dynamic programming:

- Pseudocode:
procedure $\operatorname{dpM}(1, n)$

```
for \(i \leftarrow 1\) to \(n\) do
    \(M(i, i) \leftarrow 0\)
for shift \(\leftarrow 1\) to \(n\) do
    for \(i \leftarrow 1\) to \(n-\) shift do
        \(j \leftarrow i+\) shift
        cost \(\leftarrow \infty\)
        for \(t \leftarrow i\) to \(j-1\) do
                \(n e w \leftarrow M(i, t)+M(t+1, j)+d_{i-1} \times d_{t} \times d_{j}\)
                if new < cost then
                    cost \(\leftarrow n e w\)
            \(M(i, j) \leftarrow\) cost
return \(M(1, n)\)
```

- Trace the example $n=4$ and $\left(d_{0}, d_{1}, \ldots, d_{n}\right)=(5,2,6,4,3)$:

- The innermost for loopbody takes constant time ... So $\operatorname{dpM}(n)$ worst case running time $\in \Theta\left(n^{3}\right)$.

Lecture 17: Dynamic Programming Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	matrix-chain multiplication
\square	\square	\square	deriving recurrence
\square	\square	\square	avoiding re-computation
\square	\square	\square	memoization
\square	\square	\square	bottom-up - dynamic programming

Lecture 17: Dynamic Programming
Dynamic programming key characteristics:

- Recurrence relation exists
- Recursive calls overlap
- Small number of subproblems
- Huge number of calls
- Avoid re-computation
- Bottom-up computation
- Top-down trace

Other problems suited to Dynamic programming:

- String matching: Longest Common Subsequence (next lecture)
- Optimal binary search tree construction (textbook page 356)
- All pair shortest paths in (di)graphs (CMPUT 304)
- Optimal layout in VLSI (could be a thesis topic :-))

Lecture 17: Dynamic Programming
Some more observations on Matrix-chain multiplication:

- Suppose we have computed the order of multiplications
- Suppose the last matrix multiplication is between $\left(A_{1} \times \ldots \times A_{j}\right)$ and $\left(A_{j+1} \times \ldots \times A_{n}\right)$
- Then the suborders obtained from the original order are optimal orders for the subproblems, respectively (why ???)
- We call this ... optimal substructures
- Equivalently, we need to
- compute optimal orders for
* multiplying matrices $A_{1}, A_{2}, \ldots, A_{j}$
* multiplying $A_{j+1}, A_{j+2}, \ldots, A_{n}$,
* for every index $j=1,2, \ldots,(n-1)$
- combine them into an order to multiplying $A_{1}, A_{2}, \ldots, A_{n}$
- choose the best order out of the $(n-1)$ possibilities

Longest common subsequence (LCS) problem:

Definitions: - Sequence/string: dynamicprogramming is a sequence over the English alphabet

- Base/letter/character
- Subsequence:
the given sequence with zero or more bases left out e.g., dog is a subsequence of dynamicprogramming WARNing: bases appear in the same order, but not necessarily consecutive
- Common subsequence
- LCS problem: given two sequences $X=x_{1} x_{2} \ldots x_{n}$ and $Y=y_{1} y_{2} \ldots y_{m}$, find a maximum-length common subsequence of them.
- The LCS problem has the "optimal substructure" ...
- if x_{n} is NOT in the LCS (to be computed), then we only need to compute an LCS of $x_{1} x_{2} \ldots x_{n-1}$ and $y_{1} y_{2} \ldots y_{m}$...
- similarly, if y_{m} is NOT in the LCS (to be computed), then we only need to compute an LCS of $x_{1} x_{2} \ldots x_{n}$ and $y_{1} y_{2} \ldots y_{m-1} \ldots$
- if x_{n} and y_{m} are both in the LCS (to be computed), then $x_{n}=y_{m}$ and we need to compute an LCS of $x_{1} x_{2} \ldots x_{n-1}$ and $y_{1} y_{2} \ldots y_{m-1}$;
and then adding x_{n} to the end to form an LCS for the original problem

Lecture 17: Dynamic Programming Longest common subsequence (LCS) problem (cont'd):

- Therefore, Letting $D P[n, m]$ to denote the length of an LCS of X and Y,

$$
D P[n, m]=\max \left\{\begin{array}{l}
D P\left(x_{1} x_{2} \ldots x_{n-1}, y_{1} y_{2} \ldots y_{m}\right), \\
D P\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{m-1}\right), \\
D P\left(x_{1} x_{2} \ldots x_{n-1}, y_{1} y_{2} \ldots y_{m-1}\right)+1, \quad \text { if } x_{n}=y_{m}
\end{array}\right.
$$

- Correctness
- In general, let $D P[i, j]$ denote the length of an LCS of $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.
- Recurrence:

$$
D P[i, j]=\max \left\{\begin{array}{l}
D P[i-1, j], \\
D P[i, j-1], \\
D P[i-1, j-1]+1, \quad \text { if } x_{i}=y_{j}
\end{array}\right.
$$

- Base cases ???

Lecture 17: Dynamic Programming Longest common subsequence (LCS) problem (cont'd) - solving the recurrence:

- Divide-and-Conquer running time: $\Omega\left(3^{\min \{n, m\}}\right)$
- Memoization: $\Theta(n \times m)$
- Dynamic programming:

Order of computations ???
procedure $\operatorname{dpLCS}(X, Y)$
$n \leftarrow$ length $[X]$
$m \leftarrow$ length $[Y]$
for $i \leftarrow 1$ to m do
$D P(i, 0) \leftarrow 0$
for $j \leftarrow 0$ to n do
$D P(0, j) \leftarrow 0$
for $i \leftarrow 1$ to m do for $j \leftarrow 1$ to n do if $x_{i}=y_{j}$ then $D P[i, j] \leftarrow D P[i-1, j-1]+1$
else if $D P[i-1, j] \geq D P[i, j-1]$ then
$D P[i, j] \leftarrow D P[i-1, j]$
else
$D P[i, j] \leftarrow D P[i, j-1]$
return $D P[n, m]$

Lecture 17: Dynamic Programming Longest common subsequence (LCS) problem (cont'd):

- Correctness
- Can return an associated LCS ... trace back
- Running time: $\Theta(n \times m)$

There are $n \times m$ entries each takes constant time to compute.

Can be reduced to $\Theta\left(n \times \frac{m}{\log m}\right)$ (CMPUT 606)

- Space requirement ... $\Theta(n \times m)$

Can be reduced to $\Theta(\min \{n, m\})$ (CMPUT 606)

- Applications:
- Human (and other species) Genome Project
- Detecting cheating :-)

