Lecture 16: Dynamic Programming

Agenda:

- Decision tree sorting lower bound: review
- Midterm coverage
- Dynamic programming
 - concepts
 - characteristics

Reading:

• Textbook pages 323 – 324

Lecture 16: Lower Bounds for Comparison-Based Sorting Sorting lower bound:

Comparison-based sort:

keys can be (2-way) compared only !

- This lower bound argument considers only the comparisonbased sorting algorithms. For example,
 - Insertionsort, Mergesort, Heapsort, Quicksort
 - Selectionsort, Bubblesort
- Binary tree facts:
 - Suppose there are t leaves and k levels. Then,
 - $t \le 2^{k-1}$
 - So, $\lg t \le (k-1)$
 - Equivalently, $k \ge 1 + \lg t$ — binary tree with t leaves has at least $(1 + \lg t)$ levels
- Comparison-based sorting algorithm facts:
 - Look at its *Decision Tree*. We have,
 - It's a binary tree.
 - It should contain every possible permutation of the positions $\{1, 2, \ldots, n\}$.
 - So, it contains at least n! leaves ...
 - Equivalently, it has at least $1 + \lg(n!)$ levels.
 - A longest root-to-leaf path of length at least lg(n!).
 - The worst case number of KC is at least lg(n!).
 - $\lg(n!) \in \Theta(n \log n)$

Lecture 16: Lower Bounds for Comparison-Based Sorting Sorting lower bound (cont'd):

- Key ideas in deriving the lower bound:
 - Decision tree
 - It's binary
 - Length of longest root-to-leaf path \longleftrightarrow WC KC
 - The number of possible permutations \longleftrightarrow number of leaves
- It doesn't hold for non-comparison-based sorting algorithm ... Check Chapter 8 for extra reading

Lecture 16: Midterm Coverage

Announcements:

- Midterm (Mar 5) coverage up to this lower bound analysis
- Some important subjects so far:
 - Loop invariant (& math induction)
 - design
 - * proof
 - Sorting algorithms
 - * key ideas
 - \ast execution
 - * analysis (running time, space, computational models)
 - * decision tree lower bound analysis
 - Asymptotic notations
 - * proof by definition
 - Recurrence
 - * deriving
 - * closed form guessing, iterated substitution
 - * proof by induction
 - * recursion tree
 - * Master Theorems

Lecture 16: Dynamic Programming

Dynamic programming introduction:

- An algorithm design technique
- Key idea:
 - Avoiding re-computation
 - of repeated subproblems by storing subproblem answers in tables/arrays
- 1st example problem Fibonacci numbers

	f(n)	= {	$\left(\begin{array}{c} n, \\ f(\end{array} \right)$	n-1	1)+	f(n	- 2), w	hen <i>n</i> hen <i>n</i>	a = 0, 1 $b \ge 2$
n	0	1	2	3	4	5	6	7	8	9
f(n)	0	1	1	2	3	5	8	13	21	34

Question: how do we compute f(n)?

1st Fibonacci implementation — recursion

• Pseudocode:

```
procedure f(n)

if n < 2 then

return n

else

return f(n-1) + f(n-2)
```

• Recursion tree:

- Notice that there are a lot of repeated function calls
- Running time recurrence

$$T(n) = \begin{cases} c_1, & \text{when } n = 0, 1\\ c_2 + T(n-1) + T(n-2), & \text{when } n \ge 2 \end{cases}$$

• Conclusion: $T(n) > f(n) \longrightarrow T(n) \in \Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$

6

2nd Fibonacci implementation — memoization

- \bullet Problem with the $1^{\rm st}$ implementation repeated function calls
- Improvement idea:

Keep recursion, avoid re-computation ...

- store $f(\cdot)$ values in array $F[\cdot]$
- if F[j] not yet initialized, compute it
- if F[j] is initialized, access it
- F[j] computed only once
- memoization recursion with Dynamic Programming

```
procedure dpFib(n)

for j \leftarrow 1 to n do

F[j] \leftarrow ??? **un-initialized

F[0] \leftarrow 0

F[1] \leftarrow 1

dpf(n)

procedure dpf(n)

if F[n] =??? then

F[n] \leftarrow dpf(n-1) + dpf(n-2)

return F[n]
```

- Since each F[k] known after the first dpf(k) call,
 dpf(k) called ≤ twice
- So, running time $T(n) \in \Theta(n)$

3rd Fibonacci implementation — dynamic programming

• Pseudocode:

```
procedure dpf(n)

F[0] \leftarrow 0

F[1] \leftarrow 1

for j \leftarrow 2 to n do

F[j] \leftarrow F[j-1] + F[j-2]

return F[n]
```

• Running time

 $T(n) \in \Theta(n)$

Lecture 16: Dynamic Programming

Have you understood the lecture contents?

well	ok	not-at-all	topic
			decision tree lower bound
			deriving recurrence
			avoiding re-computation
			(top-down) memoization
			bottom-up — dynamic programming