Lecture 16: Dynamic Programming

Agenda:
e Decision tree sorting lower bound: review
e Midterm coverage

e Dynamic programming
— concepts

— characteristics

Reading:

o Textbook pages 323 — 324



Lecture 16: Lower Bounds for Comparison-Based Sorting

Sorting lower bound:

Comparison-based sort:

keys can be (2-way) compared only !

This lower bound argument considers only the comparison-
based sorting algorithms. For example,

Insertionsort, Mergesort, Heapsort, Quicksort
Selectionsort, Bubblesort

Binary tree facts:

Suppose there are t leaves and k levels. Then,
t S 2k:—1
So, Igt < (k—1)

Equivalently, k> 14 1gt
— binary tree with t leaves has at least (1 +1gt) levels

Comparison-based sorting algorithm facts:

Look at its Decision Tree. We have,
It's a binary tree.

It should contain every possible permutation of the posi-
tions {1,2,...,n}.

So, it contains at least n! leaves ...

Equivalently, it has at least 1 + Ig(n!) levels.

A longest root-to-leaf path of length at least Ig(n!).
The worst case number of KC is at least Ig(n!).

lg(n!) € ©(nlogn)



Lecture 16: Lower Bounds for Comparison-Based Sorting

Sorting lower bound (cont'd):

e Key ideas in deriving the lower bound:
— Decision tree
— It's binary
— Length of longest root-to-leaf path +—— WC KC
— The number of possible permutations «—— number of

leaves

e It doesn’t hold for non-comparison-based sorting algorithm ...
Check Chapter 8 for extra reading



Lecture 16: Midterm Coverage

Announcements:
e Midterm (Mar 5) coverage up to this lower bound analysis

e Some important subjects so far:

— Loop invariant (& math induction)
x design

x proof

— Sorting algorithms
x key ideas

x execution
* analysis (running time, space, computational models)
x decision tree lower bound analysis

— Asymptotic notations
x proof by definition

— Recurrence

x deriving

x closed form guessing, iterated substitution
x proof by induction

*x recursion tree

* Master Theorems



Lecture 16: Dynamic Programming

Dynamic programming introduction:
e An algorithm design technique

o Key idea:
— Avoiding re-computation
— of repeated subproblems by storing subproblem answers
in tables/arrays
e 15t example problem — Fibonacci numbers

, when n=0,1
f(n):{ ?(n_1)+f(n_2), when 222

n‘0123456789

f(n)‘0112358132134

Question: how do we compute f(n)?



Lecture 16: Dynamic Programming

15t Fibonacci implementation — recursion

e Pseudocode:

procedure f(n)

if n <2 then
return n
else

return f(n—1) 4+ f(n —2)

e Recursion tree:

f(5)
f(4 £(3)

£3) £(2) £(2) (1)
/\ /N /N
£(2) f(1) f() £0) f(1) f(0)
/N
F(1) f(0)

e Notice that there are a lot of repeated function calls

e Running time recurrence

W= co+Tn-1)+Tn—-2), whenn>2

e Conclusion: T(n) > f(n) — T(n) € Q <<1+2£) ”)



Lecture 16: Dynamic Programming

2"d Fibonacci implementation — memoization
e Problem with the 1St implementation — repeated function
calls

e Improvement idea:
Keep recursion, avoid re-computation ...

— store f(-) values in array F[‘]

— if F[j] not yet initialized, compute it
— if F[j] is initialized, access it

— F'[j] computed only once

e Memoization — recursion with Dynamic Programming

procedure dpFib(n)

for 7<— 1 to n do
F[J] —777 **kun—-initialized
F[0] «— O
F[l] — 1
dpf(n)

procedure dpf(n)

if F[n] =777 then
F[n] < dpf(n — 1) 4+ dpf(n — 2)
return F'[n]

e Since each F[k] known after the first dpf(k) call,
dpf (k) called < twice

e SO, running time T'(n) € ©(n)



Lecture 16: Dynamic Programming

3" Fibonacci implementation — dynamic programming

e Pseudocode:
procedure dpf(n)

F[0] «— O
F[1] «— 1
for j«— 2 to n do

Flj] < F[j — 1]+ F[j — 2]
return F'[n]

e Running time

T(n) € ©(n)



Lecture 16: Dynamic Programming

Have you understood the lecture contents?

well ok not-at-all topic

decision tree lower bound
deriving recurrence
avoiding re-computation

(top-down) memoization

O o o O d
O o o O d
O o o O d

bottom-up — dynamic programming



