
Lecture 16: Dynamic Programming

Agenda:

• Decision tree sorting lower bound: review

• Midterm coverage

• Dynamic programming

– concepts

– characteristics

Reading:

• Textbook pages 323 – 324

1

Lecture 16: Lower Bounds for Comparison-Based Sorting

Sorting lower bound:

• Comparison-based sort:

keys can be (2-way) compared only !

• This lower bound argument considers only the comparison-
based sorting algorithms. For example,

– Insertionsort, Mergesort, Heapsort, Quicksort

– Selectionsort, Bubblesort

• Binary tree facts:

– Suppose there are t leaves and k levels. Then,

– t ≤ 2k−1

– So, lg t ≤ (k − 1)

– Equivalently, k ≥ 1 + lg t
— binary tree with t leaves has at least (1 + lg t) levels

• Comparison-based sorting algorithm facts:

– Look at its Decision Tree. We have,

– It’s a binary tree.

– It should contain every possible permutation of the posi-
tions {1,2, . . . , n}.

– So, it contains at least n! leaves ...

– Equivalently, it has at least 1 + lg(n!) levels.

– A longest root-to-leaf path of length at least lg(n!).

– The worst case number of KC is at least lg(n!).

– lg(n!) ∈ Θ(n logn)

2

Lecture 16: Lower Bounds for Comparison-Based Sorting

Sorting lower bound (cont’d):

• Key ideas in deriving the lower bound:

– Decision tree

– It’s binary

– Length of longest root-to-leaf path ←→ WC KC

– The number of possible permutations ←→ number of
leaves

• It doesn’t hold for non-comparison-based sorting algorithm ...

Check Chapter 8 for extra reading

3

Lecture 16: Midterm Coverage

Announcements:

• Midterm (Mar 5) coverage up to this lower bound analysis

• Some important subjects so far:

– Loop invariant (& math induction)

∗ design

∗ proof

– Sorting algorithms

∗ key ideas

∗ execution

∗ analysis (running time, space, computational models)

∗ decision tree lower bound analysis

– Asymptotic notations

∗ proof by definition

– Recurrence

∗ deriving

∗ closed form guessing, iterated substitution

∗ proof by induction

∗ recursion tree

∗ Master Theorems

4

Lecture 16: Dynamic Programming

Dynamic programming introduction:

• An algorithm design technique

• Key idea:

– Avoiding re-computation

– of repeated subproblems by storing subproblem answers
in tables/arrays

• 1st example problem — Fibonacci numbers

f(n) =
{

n, when n = 0,1
f(n− 1) + f(n− 2), when n ≥ 2

n 0 1 2 3 4 5 6 7 8 9

f(n) 0 1 1 2 3 5 8 13 21 34

Question: how do we compute f(n)?

5

Lecture 16: Dynamic Programming

1st Fibonacci implementation — recursion

• Pseudocode:

procedure f(n)

if n < 2 then
return n

else
return f(n− 1) + f(n− 2)

• Recursion tree:

f(1) f(0)

f(2)
�

�
S
S

f(1) f(1) f(0) f(1) f(0)

f(3)
�

�
S
S

f(2)
�

�
S
S

f(2)
�

�
S
S

f(1)f(3)
�

�
S
S

f(4)
�

�
�

@
@

@

f(3)
�

�
�

@
@

@

f(5)
�

���
���

H
HHH

HHH

• Notice that there are a lot of repeated function calls

• Running time recurrence

T (n) =
{

c1, when n = 0,1
c2 + T (n− 1) + T (n− 2), when n ≥ 2

• Conclusion: T (n) > f(n) −→ T (n) ∈ Ω
((

1+
√

5
2

)n)
6

Lecture 16: Dynamic Programming

2nd Fibonacci implementation — memoization

• Problem with the 1st implementation — repeated function
calls

• Improvement idea:

Keep recursion, avoid re-computation ...

– store f(·) values in array F [·]

– if F [j] not yet initialized, compute it

– if F [j] is initialized, access it

– F [j] computed only once

• memoization — recursion with Dynamic Programming

procedure dpFib(n)

for j ← 1 to n do
F [j]←??? **un-initialized

F [0]← 0
F [1]← 1
dpf(n)

procedure dpf(n)

if F [n] =??? then
F [n]← dpf(n− 1) + dpf(n− 2)

return F [n]

• Since each F [k] known after the first dpf(k) call,

dpf(k) called ≤ twice

• So, running time T (n) ∈ Θ(n)

7

Lecture 16: Dynamic Programming

3rd Fibonacci implementation — dynamic programming

• Pseudocode:

procedure dpf(n)

F [0]← 0
F [1]← 1
for j ← 2 to n do

F [j]← F [j − 1] + F [j − 2]
return F [n]

• Running time

T (n) ∈ Θ(n)

8

Lecture 16: Dynamic Programming

Have you understood the lecture contents?

well ok not-at-all topic

� � � decision tree lower bound

� � � deriving recurrence

� � � avoiding re-computation

� � � (top-down) memoization

� � � bottom-up — dynamic programming

9

