Lecture 15: Lower Bounds for Comparison-Based Sorting

Agenda:

- Two useful trees in algorithm analysis (recall)
- Recursion tree
- Decision tree
- Decision tree sorting lower bound

Reading:

- Textbook pages 165-168

Lecture 15: Lower Bounds for Comparison-Based Sorting Two useful trees in algorithm analysis:

- Recursion tree
- node \longleftrightarrow recursive call
- describes algorithm execution for one particular input by showing all calls made
- one algorithm execution \longleftrightarrow all nodes (a tree)
- useful in analysis:
sum the numbers of operations over all nodes

Lecture 15: Lower Bounds for Comparison-Based Sorting Recursion tree example:

- Mergesort pseudocode

```
Merge(A;lo,mid,hi) **p 29
    **pre-condition: lo \leqmid \leqhi
    **pre-condition: }A[lo,mid] and A[mid + 1,hi] sorte
    **post-condition: A[lo,hi] sorted
```

MergeSort $(A ; l o, h i) \quad * * p 32$

$$
\text { if } \begin{array}{ll}
l o<h i \text { then } \\
& \text { mid } \leftarrow\lfloor(l o+h i) / 2\rfloor \\
\text { MergeSort }(A ; l o, \text { mid }) \\
& \text { MergeSort }(A ; \text { mid }+1, h i) \\
\text { Merge }(A ; l o, \text { mid }, h i)
\end{array}
$$

- For different input instance, the number of operations at each node could be different.

Lecture 15: Lower Bounds for Comparison-Based Sorting Two useful trees in algorithm analysis:

- Recursion tree
- node \longleftrightarrow recursion call
- describes algorithm execution for one particular input by showing all calls made
- one algorithm execution \longleftrightarrow all nodes (a tree)
- useful in analysis:
sum the numbers of operations over all nodes
- Decision tree
- node \longleftrightarrow algorithm decision
- describes algorithm execution for all possible inputs by showing all possible algorithm decisions
- one algorithm execution \longleftrightarrow one root-to-leaf path
- useful in analysis:
sum the numbers of operations over nodes on one path

Lecture 15: Lower Bounds for Comparison-Based Sorting Selectionsort decision tree:

- Assume input keys in array $A[1 . .3]=\{a, b, c\}$
- Tree node: if $A[k]>A[j]$ - 2-way key comparison
- Node label $A[j]$

SelectionSort $(A ; n)$
if $n \geq 1$ then
for $j \leftarrow n$ downto 2 do $p s n \leftarrow j$
for $k \leftarrow j-1$ downto 1 do
if $A[k]>A[p s n]$ then
$p s n \leftarrow k$
exchange $A[j] \leftrightarrow A[p s n]$
return

- In every case - whatever input instance is, 3 KC !!!

Lecture 15: Lower Bounds for Comparison-Based Sorting Sorting lower bound:

- Comparison-based sort: keys can be (2-way) compared only !
- This lower bound argument considers only the comparisonbased sorting algorithms. For example,
- Insertionsort, Mergesort, Heapsort, Quicksort
- Selectionsort, Bubblesort
- Binary tree facts:
- Suppose there are t leaves and k levels. Then,
$-t \leq 2^{k-1}$
- So, $\lg t \leq(k-1)$
- Equivalently, $k \geq 1+\lg t$
- binary tree with t leaves has at least $(1+\lg t)$ levels
- Comparison-based sorting algorithm facts:
- Look at its Decision Tree. We have,
- It's a binary tree.
- It should contain every possible permutation of the positions $\{1,2, \ldots, n\}$.
- So, it contains at least n ! leaves ...
- Equivalently, it has at least $1+\lg (n!)$ levels.
- A longest root-to-leaf path of length at least $\lg (n!)$.
- The worst case number of KC is at least $\lg (n!)$.
$-\lg (n!) \in \Theta(n \log n)$

Lecture 15: Lower Bounds for Comparison-Based Sorting Sorting lower bound (cont'd):

- Key ideas in deriving the lower bound:
- Decision tree
- It's binary
- Length of longest root-to-leaf path \longleftrightarrow WC KC
- The number of possible permutations \longleftrightarrow number of leaves
- It doesn't hold for non-comparison-based sorting algorithm ... Check Chapter 8 for extra reading

Lecture 15: Lower Bounds for Comparison-Based Sorting Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	recursion tree
\square	\square	\square	decision tree
\square	\square	\square	difference between them
\square	\square	\square	WC running time \leftrightarrow longest path
\square	\square	\square	BC running time \leftrightarrow shortest path
\square	\square	\square	Each leaf is a permutation
\square	\square	\square	Deriving the lower bound

