Lecture 15: Lower Bounds for Comparison-Based Sorting

Agenda:

- Two useful trees in algorithm analysis (recall)
 - Recursion tree
 - Decision tree
- Decision tree sorting lower bound

Reading:

• Textbook pages 165 - 168

Lecture 15: Lower Bounds for Comparison-Based Sorting Two useful trees in algorithm analysis:

- Recursion tree
 - node \longleftrightarrow recursive call
 - describes algorithm execution for <u>one particular input</u> by showing all calls made
 - one algorithm execution \leftrightarrow all nodes (a tree)
 - useful in analysis:
 sum the numbers of operations over all nodes

Lecture 15: Lower Bounds for Comparison-Based Sorting Recursion tree example:

• Mergesort pseudocode

MergeSort(A; lo, hi) **p 32

if lo < hi then $mid \leftarrow \lfloor (lo + hi)/2 \rfloor$ MergeSort(A; lo, mid) MergeSort(A; mid + 1, hi) Merge(A; lo, mid, hi)

• For different input instance, the number of operations at each node could be different.

Lecture 15: Lower Bounds for Comparison-Based Sorting Two useful trees in algorithm analysis:

- Recursion tree
 - node \longleftrightarrow recursion call
 - describes algorithm execution for <u>one particular input</u> by showing all calls made
 - one algorithm execution \leftrightarrow all nodes (a tree)
 - useful in analysis:
 sum the numbers of operations over all nodes
- Decision tree
 - node \longleftrightarrow algorithm decision
 - describes algorithm execution for <u>all possible inputs</u> by showing all possible algorithm decisions
 - one algorithm execution \longleftrightarrow one root-to-leaf path
 - useful in analysis:
 sum the numbers of operations over nodes on one path

Lecture 15: Lower Bounds for Comparison-Based Sorting Selectionsort decision tree:

- Assume input keys in array $A[1..3] = \{a, b, c\}$
- Tree node: if A[k] > A[j] 2-way key comparison
- Node label A[j]

SelectionSort(A; n)

In every case — whatever input instance is, 3 KC !!!

Lecture 15: Lower Bounds for Comparison-Based Sorting Sorting lower bound:

Comparison-based sort:

keys can be (2-way) compared only !

- This lower bound argument considers only the comparisonbased sorting algorithms. For example,
 - Insertionsort, Mergesort, Heapsort, Quicksort
 - Selectionsort, Bubblesort
- Binary tree facts:
 - Suppose there are t leaves and k levels. Then,
 - $t \le 2^{k-1}$
 - So, $\lg t \leq (k-1)$
 - Equivalently, $k \ge 1 + \lg t$ — binary tree with t leaves has at least $(1 + \lg t)$ levels
- Comparison-based sorting algorithm facts:
 - Look at its *Decision Tree*. We have,
 - It's a binary tree.
 - It should contain every possible permutation of the positions $\{1, 2, \ldots, n\}$.
 - So, it contains at least n! leaves ...
 - Equivalently, it has at least $1 + \lg(n!)$ levels.
 - A longest root-to-leaf path of length at least lg(n!).
 - The worst case number of KC is at least lg(n!).
 - $\lg(n!) \in \Theta(n \log n)$

Lecture 15: Lower Bounds for Comparison-Based Sorting Sorting lower bound (cont'd):

- Key ideas in deriving the lower bound:
 - Decision tree
 - It's binary
 - Length of longest root-to-leaf path \longleftrightarrow WC KC
 - The number of possible permutations \longleftrightarrow number of leaves
- It doesn't hold for non-comparison-based sorting algorithm ... Check Chapter 8 for extra reading

Lecture 15: Lower Bounds for Comparison-Based Sorting Have you understood the lecture contents?

well	ok	not-at-all	topic
			recursion tree
			decision tree
			difference between them
			WC running time \leftrightarrow longest path
			BC running time \leftrightarrow shortest path
			Each leaf is a permutation
			Deriving the lower bound