Lecture 14: Quicksort

Agenda:

- Quicksort
- AC running time (KC)
- Space requirement
- Improvement
- Two useful trees in algorithm analysis
- Recursion tree
- Decision tree

Reading:

- Textbook pages 153 - 168

Lecture 14: Quicksort
Quicksort AC running time:

- Recurrence

$$
T(n)= \begin{cases}0, & \text { when } n=0,1 \\ T\left(n_{1}\right)+T\left(n-1-n_{1}\right)+(n-1), & \text { when } n \geq 2\end{cases}
$$

- Average case: "What is the probability for the left subarray to have size n_{1} ?"
Average case: always ask "average over what input distribution?"
- Unless stated otherwise, assume each possible input equiprobable

Uniform distribution

- Here, each of the \qquad possible inputs equiprobable
- Key observation: equiprobable inputs imply for each key, rank among keys so far is equiprobable

So, n_{1} can be $0,1,2, \ldots, n-2, n-1$, with the same probability $\frac{1}{n}$
-

$$
\begin{gathered}
T(n)=\frac{1}{n}(T(0)+T(n-1)) \\
+\frac{1}{n}(T(1)+T(n-2)) \\
+\ldots \\
\quad+\frac{1}{n}(T(n-2)+T(1)) \\
\quad+\frac{1}{n}(T(n-1)+T(0)) \\
\quad+(n-1) \\
=\quad \frac{2}{n} \sum_{i=0}^{n-1} T(i)+(n-1)
\end{gathered}
$$

Solving $T(n)$:

- $T(n)=\frac{2}{n} \sum_{i=0}^{n-1} T(i)+(n-1)$
- Therefore,

$$
\begin{aligned}
& -n \times T(n)=2 \sum_{i=0}^{n-1} T(i)+n(n-1) \\
& -(n-1) \times T(n-1)=2 \sum_{i=0}^{n-2} T(i)+(n-1)(n-2)
\end{aligned}
$$

- Therefore,

$$
n \times T(n)-(n-1) \times T(n-1)=2 T(n-1)+2(n-1)
$$

Rearrange it:

$$
n T(n)=(n+1) T(n-1)+2(n-1)
$$

Or

$$
\begin{aligned}
\frac{T(n)}{n+1} & =\frac{T(n-1)}{n}+\frac{2(n-1)}{n(n+1)} \\
& =\frac{T(n-1)}{n}+\frac{2}{n+1}-2\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\frac{T(n-1)}{n}+\frac{4}{n+1}-\frac{2}{n}
\end{aligned}
$$

which gives you (iterated substitution)

$$
\frac{T(n)}{n+1}=\sum_{i=1}^{n} \frac{2}{i+1}+\left(\frac{2}{n+1}-2\right)
$$

Solving $T(n)$ (cont'd):

- Recall that $\sum_{i=1}^{n} \frac{1}{i}=H_{n}=\ln n+\gamma$ - the Harmonic number where $\gamma \approx 0.577 \cdots$
- So, from

$$
\frac{T(n)}{n+1}=\sum_{i=1}^{n} \frac{2}{i+1}+\left(\frac{2}{n+1}-2\right)
$$

we have

$$
\begin{aligned}
T(n) & =2(n+1) H_{n+1}-(4 n+2) \\
& \approx 2(n+1)(\ln (n+1)+\gamma)-(4 n+2) \\
& \in \Theta(n \log n)
\end{aligned}
$$

- Conclusion:

Quicksort $A C$ running time in $\Theta(n \log n)$.

Quicksort space requirement:

- Not an in-space sorting algorithm, because
- extra space required for all subproblems on the stack
- in the worst case, there can be $\Theta(n)$ subproblems on stack

Quicksort improvements:

- Split key selection, instead of $A[n]$
- use $A\left[\frac{n+1}{2}\right]$
- use median of $A[1], A\left[\frac{n+1}{2}\right], A[n]$
- randomized: randomly choose one from $A[1 . . n]$
* say $A[j]$
* swap $A[j] \leftrightarrow A[n]$
* normal Quicksort (using $A[n]$ as the split key)
- Small sublists:
- Use insertion sort
- Can determine the best crossover size is about 20
can you?

Lecture 14: Quicksort
Sorting Algorithms So Far: Running Time Comparison

Alg.	BC	WC	AC
InsertionSort	$\Theta(n)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
SelectionSort			
BubbleSort			
MergeSort	$\Theta(n \log n)$	$\Theta(n \log n)$	$?$
HeapSort	$\Theta(n \log n)$	$\Theta(n \log n)$	$?$
QuickSort	$\Theta(n \log n)$	$\Theta\left(n^{2}\right)$	$\Theta(n \log n)$

- How to get these running times?
- Identify the BC/WC/AC cases for them.

For example, what is the best case array for QuickSort when $n=15$?

- How to modify HeapSort to have best case running time in $\Theta(n)$?

Two useful trees in algorithm analysis:

- Recursion tree
- node \longleftrightarrow recursion call
- describes algorithm execution for one particular input by showing all calls made
- one algorithm execution \longleftrightarrow all nodes (a tree)
- useful in analysis: sum number of operations over all nodes
- Decision tree
- node \longleftrightarrow algorithm decision
- describes algorithm execution for all possible inputs by showing all possible algorithm decisions
- one algorithm execution \longleftrightarrow one root-to-leaf path
- useful in analysis: sum number of operations over nodes on one path

Recursion tree example:

- Merge sort pseudocode

Merge(A;lo,mid,hi) **p 29
**pre-condition: $\quad l o \leq m i d \leq h i$
**pre-condition: $A[l o, m i d]$ and $A[m i d+1, h i]$ sorted **post-condition: $A[l o, h i]$ sorted

MergeSort $(A ; l o, h i) \quad * * p 32$

$$
\text { if } \begin{array}{ll}
l o<h i \text { then } \\
& \text { mid } \leftarrow\lfloor(l o+h i) / 2\rfloor \\
\text { MergeSort }(A ; l o, \text { mid }) \\
& \text { MergeSort }(A ; \text { mid }+1, h i) \\
\text { Merge }(A ; l o, \text { mid }, h i)
\end{array}
$$

- For different input instance, the number of operations at each node could be different.

Binary search decision tree:

- Assume input keys in array $A[1 . .20]$
- Tree node \longleftrightarrow "3-way key comparison $<,=,>$?
- Node label $A[j]$
- WC number of KC: 5 (in general $1+\lfloor\lg n\rfloor$)

- AC number of KC:

Ask input distribution?

- target in the array, each location equiprobable:

$$
\frac{1}{20} \times\left(2^{0} \times 1+2^{1} \times 2+2^{2} \times 3+2^{3} \times 4+5 \times 5\right)=3.7
$$

- target not in the array, each gap equiprobable:

$$
\frac{1}{21} \times(11 \times 4+10 \times 5)=4.5
$$

- Both distribution:

$$
T\left(n=2^{k}-1\right)=\lfloor\lg n\rfloor+\frac{1}{2}
$$

Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	quicksort AC running time
\square	\square	\square	quicksort space requirement
\square	\square	\square	quicksort improvements
\square	\square	\square	randomized quicksort
\square	\square	\square	recursion tree
\square	\square	\square	decision tree
\square	\square	\square	difference between them

