Lecture 13: Quick Sort

Agenda:

- Quicksort
- Algorithm recall
- Correctness
- WC running time (KC)
- BC running time (KC)

Reading:

- Textbook pages 149 - 153

Lecture 13: Quicksort

Another sorting meets divide-and-conquer (recall):

- The ideas:
- Pick one key (so far, the last key)
- Compare to others: partition into smaller and greater sublists
- Recursively sort two sublists
- Pseudocode:
procedure Quicksort $(A, p, r) \quad * * p 146$

$$
\text { if } \begin{aligned}
& p<r \text { then } \\
& q \leftarrow \operatorname{Partition}(A, p, r) \\
& \text { Quicksort }(A, p, q-1) \\
& \text { Quicksort }(A, q+1, r)
\end{aligned}
$$

procedure Partition $(A, p, r) \quad * * p 146$
** $A[r]$ is the key picked to do the partition
$x \leftarrow A[r]$
$i \leftarrow p-1$
for $j \leftarrow p$ to $r-1$ do
if $A[j] \leq x$ then
$i \leftarrow i+1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[i+1] \leftrightarrow A[r]$
return $i+1$

- $A[1 . .9]=\{3,6,4,7,1,2,5,9,8\}$

Quicksort correctness:

- It follows from the correctness of Partition.
- Partition correctness:
- Loop invariant:

At the start of for loop:

1. $A[p . . i] \leq A[r]-A[s] \leq A[r], p \leq s \leq i$
2. $A[(i+1) . .(j-1)]>A[r]$
3. $x=A[r]$

- Proof of LI: (pages 147 - 148)

1. Initialization
2. Maintenance
3. Termination

- LI correctness implies Partition correctness

Quicksort notes:

- Why we study it:
- very efficient, in use
- divide-and-conquer, randomization
- huge literature
- a model for analysis of algorithms
- History:
- Hoare 1961: conception
- Knuth 1973: first analysis
- Sedgewick 1980: more analysis
- McDiarmid, Hayward, etc.

Quicksort recursion tree:

- Observations:
- (Again) key comparison is the dominant operation
- Counting KC
- only need to know (at each call) the rank of the split key
- An example:

- More observations:
- In the resulting recursion tree, at each node (all keys in left subtree) \leq (key in this node) $<$ (all keys in right subtree)
- 1-1 correspondence:
quicksort recursion tree \longleftrightarrow binary search tree

Quicksort WC running time:

- The split key is compared with every other key: $(n-1) \mathrm{KC}$
- Recurrence:

$$
T(n)=T\left(n_{1}\right)+T\left(n-1-n_{1}\right)+(n-1),
$$

where $0 \leq n_{1} \leq n-1$
Base case: $T(0)=0, T(1)=0$

- Notice that when both subarrays are non-empty, we will be having

$$
\left(n_{1}-1\right)+\left(n-1-n_{1}-1\right)=(n-3)
$$

KC next level ...

- Worst case: one of the subarray is empty !!! needs $(n-2)$ KC next level
- WC recurrence:

$$
T(n)=T(0)+T(n-1)+(n-1)=T(n-1)+(n-1),
$$

- Solving the recurrence - Master Theorem does NOT apply

$$
\begin{aligned}
T(n) & =T(n-1)+(n-1)=T(n-2)+(n-2)+(n-1) \\
& =\cdots \\
& =\frac{T(1)+1+2+\ldots+(n-1)}{2} \\
& =\frac{(n-1) n}{}
\end{aligned}
$$

So, $T(n) \in \Theta\left(n^{2}\right)$

- Therefore, quicksort is bad in terms of WC running time !

Quicksort BC running time:

- Notice that when both subarrays are non-empty, we will be saving 1 KC ...
- Best case: each partition is a bipartition !!!

Saving as many KC as possible every level ...
The recursion tree is as short as possible ...

- Recurrence:

$$
T(n)=2 \times T\left(\frac{n-1}{2}\right)+(n-1),
$$

- Solving the recurrence - apply Master Theorem? not exactly $T(n) \in \Theta(n \log n)$
- Question:
- What is the best case array? for $n=7$?
- Conclusion:
- In order to save time, $A[n]$ better BI-partitions the array
- usually it might not bipartition ... we will push it by a technique called randomization (future lectures)

Quicksort BC running time (cont'd):

- In the recursion tree, what is the number of KC at each level? Answer:
$-n-1$ at the top level
- at most 2 nodes at the 2 nd level, at least $\left(n_{1}-1\right)+\left(n-1-n_{1}-1\right)=n-3 \mathrm{KC}$
- at most 4 nodes at the 3rd level, at least $\left(n_{1}-3\right)+\left(n-1-n_{1}-3\right)=n-7 \mathrm{KC}$
- ...
- at k th level, at most 2^{k-1} nodes, at least $n-2^{k}+1 \mathrm{KC}$
- How many levels are there?

Answer:

- At least $\lg n$ levels - binary tree
- So, at least we need

$$
\begin{aligned}
& \sum_{i=1}^{\lg n-1}\left(n-2^{i}+1\right) K \mathrm{KC}, \text { and } \\
& \sum_{i=1}^{\lg n-1}\left(n-2^{i}+1\right)=(n+1)(\lg n-1)-(n-2) \in \Theta(n \log n)
\end{aligned}
$$

- Try $n=2^{k}-1$ to get the closed form for the following recurrence

$$
T(n)= \begin{cases}0, & \text { if } n=1 \\ (n-1)+T\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n-1}{2}\right\rceil\right), & \text { if } n \geq 2\end{cases}
$$

Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	quicksort idea
\square	\square	\square	quicksort pseudocode(s), execution
\square	\square	\square	correctness of quicksort
\square	\square	\square	quicksort WC running time
\square	\square	\square	worst case
\square	\square	\square	quicksort BC running time
\square	\square	\square	best case

