Lecture 12: Heapsort, Priority Queue & Quicksort

Agenda:

- Heapsort BC running time all keys are distinct
- Priority queue
- Quicksort
 - A divide-and-conquer algorithm
 - The ideas & execution

Reading:

• Textbook pages 138 – 149

Heapsort BC running time — all keys distinct:

- To simplify argument, assume $n = 2^k 1$ and so there are 2^{k-1} nodes at the bottom level of the heap (draw as a binary tree)
- To count how many KCs to put the first 2^{k-1} largest keys into positions
- In the original heap, the nodes holding these largest 2^{k-1} keys: If they are at the bottom level, colored RED,
 If not, colored BLUE
- RED and BLUE nodes form a binary tree (a subtree inside the original tree), without any non-colored nodes inside, according to heap property.
- Therefore, there are $\leq 2^{k-2}$ RED nodes and so $\geq 2^{k-2}$ BLUE nodes.
- To count how many KCs to put the <u>BLUE</u> keys into positions
- Ask: how did those **BLUE** keys leave the heap?

They have to be moved up to the root.

— not through exchange !!! why ???

— BLUE keys cannot sink down to the bottom level during the first 2^{k-1} iterations ...

Lecture 12: Heapsort Analysis

Heapsort BC running time — all keys distinct (cont'd):

- So, ...
 - total #KCs
 - $\geq \#$ KCs for the first 2^{k-1} key extractions
 - $\ge \#$ KCs to move all **BLUE** keys to the root
 - $\,\geq\,$ sum of the depths of BLUE nodes in the binary tree

$$- \geq \sum_{j=1}^{2^{k-2}} \left\lceil \lg(j+1)
ight\rceil \in \Theta(n \log n)$$

- So, ...
 - running time $\in \Omega(n \log n)$
 - Since WC in $\Theta(n \log n)$, it is $\in \Theta(n \log n)$ too.

Priority Queue:

- An abstract data structure for maintaining a set ${\cal S}$ of elements each associated with a $k\!e\!y$
- Key represents the priority of the element
- Defined by operations, not implementation
- Operations:
 - initialize insert all keys at once
 - insert a new element
 - maximum return the element with the maximum key
 - extract maximum return the maximum and remove the element from the queue
 - increase key increase the priority for an element
- Implementation? Heap !!!

Arrange the priorities (keys) into a max-heap, and

- make a link from each priority to the corresponding element
- rearrangement of priorities \iff rearrangement of elements.
 - Initialize(A) Build-Max-Heap
 - Maximum(A) return A[1]
 - Extract-Maximum(A) return A[1] and when heapsize(A) > 1, decrease heapsize, pull the last key to the top, and Max-Heapify (Question: when $heapsize(A) \le 1$?)
 - Increase-Key (A, i, new_key) increase the priority value for A[i] and bubble up to the right position
 - $Insert(A, new_key)$ increase heapsize, add a new key with priority value equal to new_key, and bubble up

Another sorting meets divide-and-conquer:

- The ideas:
 - Pick one key
 - Compare to others: partition into 'smaller' and 'greater' sublists
 - Recursively sort two sublists
- Pseudocode:

```
procedure Quicksort(A, p, r) **p 146

if p < r then

q \leftarrow Partition(A, p, r)

Quicksort(A, p, q - 1)

Quicksort(A, q + 1, r)

procedure Partition(A, p, r) **p 146

** A[r] is the key picked to do the partition

x \leftarrow A[r]

i \leftarrow p - 1

for j \leftarrow p to r - 1 do

if A[j] \leq x then

i \leftarrow i + 1

exchange A[i] \leftrightarrow A[j]

exchange A[i + 1] \leftrightarrow A[r]

return i + 1
```

Lecture 12: Quicksort

Partition(A, p, r):

- The invariant:
 - A[p..i] contains keys $\leq A[r]$
 - A[(i+1)..(j-1)] contains keys > A[r]
- Ideas:
 - A[j] is the current key under examination $j \geq i$
 - If $A[j] \leq A[r]$, exchange $A[j] \leftrightarrow A[i+1]$ and increment i to maintain the invariant
 - At the end, exchange $A[r] \leftrightarrow A[i+1]$ such that:
 - * A[p..i] contains keys $\leq A[i+1]$
 - * A[(i+2)..r] contains keys > A[i+1]
 - * After A[p..i] and A[(i + 2)..r] been sorted, A[p..r] is sorted.

• An example: $A[1..8] = \{3, 1, 7, 6, 4, 8, 2, 5\}, p = 1, r = 8$

3	1	7	6	4	8	2	5	i = 0, j = 1
3	1	7	6	4	8	2	5	i = 1, j = 2
3	1	7	6	4	8	2	5	i = 2, j = 3
3	1	7	6	4	8	2	5	i = 2, j = 4
3	1	4	6	7	8	2	5	i = 3, j = 5
3	1	4	6	7	8	2	5	i = 3, j = 6
3	1	4	6	7	8	2	5	i = 3, j = 7
3	1	4	2	7	8	6	5	i = 4, j = 7
3	1	4	2	5	8	6	7	i = 4, j = 7

Lecture 12: Quicksort

Have you understood the lecture contents?

well	ok	not-at-all	topic
			BC running time (two cases)
			priority queue
			priority queue operations (via heap)
			quicksort idea
			quicksort pseudocode(s), execution