
Lecture 12: Heapsort, Priority Queue &

Quicksort

Agenda:

• Heapsort BC running time — all keys are distinct

• Priority queue

• Quicksort

– A divide-and-conquer algorithm

– The ideas & execution

Reading:

• Textbook pages 138 – 149

1

Lecture 12: Heapsort Analysis

Heapsort BC running time — all keys distinct:

• To simplify argument, assume n = 2k − 1 and so there are
2k−1 nodes at the bottom level of the heap (draw as a binary
tree)

• To count how many KCs to put the first 2k−1 largest keys
into positions

• In the original heap, the nodes holding these largest 2k−1 keys:

If they are at the bottom level, colored RED,

If not, colored BLUE

• RED and BLUE nodes form a binary tree (a subtree inside the
original tree), without any non-colored nodes inside, according
to heap property.

• Therefore, there are ≤ 2k−2 RED nodes and so ≥ 2k−2 BLUE
nodes.

• To count how many KCs to put the BLUE keys into positions

• Ask: how did those BLUE keys leave the heap?

They have to be moved up to the root.

— not through exchange !!! why ???

— BLUE keys cannot sink down to the bottom level
during the first 2k−1 iterations ...

2

Lecture 12: Heapsort Analysis

Heapsort BC running time — all keys distinct (cont’d):

• So, ...

– total #KCs

– ≥ #KCs for the first 2k−1 key extractions

– ≥ #KCs to move all BLUE keys to the root

– ≥ sum of the depths of BLUE nodes in the binary tree

– ≥
∑2k−2

j=1

⌈
lg(j + 1)

⌉
∈ Θ(n logn)

• So, ...

– running time ∈ Ω(n logn)

– Since WC in Θ(n logn), it is ∈ Θ(n logn) too.

3

Lecture 12: Priority Queue

Priority Queue:

• An abstract data structure for maintaining a set S of elements
each associated with a key

• Key — represents the priority of the element

• Defined by operations, not implementation

• Operations:

– initialize — insert all keys at once

– insert — a new element

– maximum — return the element with the maximum key

– extract maximum — return the maximum and remove the
element from the queue

– increase key — increase the priority for an element

• Implementation? Heap !!!

Arrange the priorities (keys) into a max-heap, and

make a link from each priority to the corresponding element

— rearrangement of priorities⇐⇒ rearrangement of elements.

– Initialize(A) — Build-Max-Heap

– Maximum(A) — return A[1]

– Extract-Maximum(A) — return A[1] and when heapsize(A) >
1, decrease heapsize, pull the last key to the top, and
Max-Heapify (Question: when heapsize(A) ≤ 1 ?)

– Increase-Key(A, i, new key) — increase the priority value
for A[i] and bubble up to the right position

– Insert(A, new key) — increase heapsize, add a new key
with priority value equal to new key, and bubble up

4

Lecture 12: Quicksort

Another sorting meets divide-and-conquer:

• The ideas:

– Pick one key

– Compare to others: partition into ‘smaller’ and ‘greater’
sublists

– Recursively sort two sublists

• Pseudocode:

procedure Quicksort(A, p, r) **p 146

if p < r then
q ← Partition(A, p, r)
Quicksort(A, p, q − 1)
Quicksort(A, q + 1, r)

procedure Partition(A, p, r) **p 146
** A[r] is the key picked to do the partition

x← A[r]
i← p− 1
for j ← p to r − 1 do

if A[j] ≤ x then
i← i + 1
exchange A[i]↔ A[j]

exchange A[i + 1]↔ A[r]
return i + 1

5

Lecture 12: Quicksort

Partition(A, p, r):

• The invariant:

– A[p..i] contains keys ≤ A[r]

– A[(i + 1)..(j − 1)] contains keys > A[r]

• Ideas:

– A[j] is the current key under examination — j ≥ i

– If A[j] ≤ A[r], exchange A[j]↔ A[i + 1] and increment i

to maintain the invariant

– At the end, exchange A[r]↔ A[i + 1] such that:

∗ A[p..i] contains keys ≤ A[i + 1]

∗ A[(i + 2)..r] contains keys > A[i + 1]

∗ After A[p..i] and A[(i + 2)..r] been sorted, A[p..r] is
sorted.

• An example: A[1..8] = {3,1,7,6,4,8,2,5}, p = 1, r = 8

3 1 7 6 4 8 2 5 i = 0, j = 1
3 1 7 6 4 8 2 5 i = 1, j = 2
3 1 7 6 4 8 2 5 i = 2, j = 3
3 1 7 6 4 8 2 5 i = 2, j = 4
3 1 4 6 7 8 2 5 i = 3, j = 5
3 1 4 6 7 8 2 5 i = 3, j = 6
3 1 4 6 7 8 2 5 i = 3, j = 7
3 1 4 2 7 8 6 5 i = 4, j = 7
3 1 4 2 5 8 6 7 i = 4, j = 7

6

Lecture 12: Quicksort

Have you understood the lecture contents?

well ok not-at-all topic

� � � BC running time (two cases)

� � � priority queue

� � � priority queue operations (via heap)

� � � quicksort idea

� � � quicksort pseudocode(s), execution

7

