Lecture 11: Heapsort & Its Analysis
Agenda:

e Heap recall:
— Heap: definition, property
— Max-Heapify
— Build-Max-Heap

e Heapsort algorithm

e Running time analysis

Reading:

e [Textbook pages 127 — 138

Lecture 11: Heapsort

(Binary-)Heap data structure (recall):

e An array A[l..n] of n comparable keys
either ‘>’ or ‘<’

e An implicit binary tree, where
— A[24] is the left child of A[j]
— A[27 4+ 1] is the right child of A[j]
_ A[L%J] is the parent of A[j]

e Keys satisfy the max-heap property: A[L%j] > Alj]
e There are max-heap and min-heap. We use max-heap.
e A[l] is the maximum among the n keys.

e Viewing heap as a binary tree, height of the tree is h = [lgn].
Call the height of the heap.
[— the number of edges on the longest root-to-leaf path]

e A heap of height k can hold 2k
Why 7?77

2k+1 _ 1 keys.

Sincelgn—1< k<Ign
= n <21 and 28 <n
— 2k < n < 2kt1

Lecture 11: Heapsort

Max-Heapify (recall):
e It makes an almost-heap into a heap.

e Pseudocode:

procedure Max-Heapify(A,1) **p 130
**turn almost-heap into a heap
x*pre-condition: tree rooted at A[i] is almost-heap
*x*post-condition: tree rooted at A[i] is a heap

lc — leftchild(i)

rc <« rightchild(7)

if lc < heapsize(A) and Allc] > A[i] then
largest «— lc

else
largest «— 1

if rc < heapsize(A) and Alrc] > Allargest] then
largest «— rc

if largest # i then
exchange A[i] < Allargest]
Max-Heapify(A, largest)

e WC running time: Ign.

Lecture 11: Heapsort

Build-Max-Heap (recall):
e Given: an array of n keys A[l], A[2],..., A[n]
e Output: a permutation which is a heap

e Ideas:

Repeatedly apply Max-Heapify to nodes in the binary tree
representation

— bottom up

e Pseudocode:

procedure Build-Max-Heapify(A) **p 133
**xturn an array into a heap

heapsize(A) « length[A]

for i «— %J downto 1

do Max-Heapify(A,1)

e WC running time:
lgn+2(lgn—1)4+22(lgn—2)4...+209n-D .1 =2n—Ign—2.

Lecture 11: Heapsort

Heapsort algorithm:
e Heapsort is a data structure algorithm.

e The ideas:
— Build the array into a heap (WC cost ©(n))

— The first key A[1] is the maximum and thus should be in
the last position when sorted

— Exchange A[1] with A[n], and decrease heap size by 1

— Max-Heapify the array A[l..(n — 1)],
which is an almost-heap

e An example: A[1..10] ={4,1,7,9,3,10,14,8,2,16}

Build into a heap:
1)
2() s()

{0 O O O
8@ 9@10@

Lecture 11: Heapsort

Heapsort algorithm (cont'd):
e Heapsort is a data structure algorithm.

e The ideas:
— Build the array into a heap (WC cost ©(n))

— The first key A[1] is the maximum and thus should be in
the last position when sorted

— Exchange A[1] with A[n], and decrease heap size by 1

— Max-Heapify the array A[l..(n — 1)],
which is an almost-heap

e An example: A[1..10] ={4,1,7,9,3,10,14,8,2,16}

Heapsize = 10:
1(16
2(s) (i

() s() o) @)
8@ 9@10@

Lecture 11: Heapsort

Heapsort algorithm (cont'd):
e Heapsort is a data structure algorithm.

e The ideas:
— Build the array into a heap (WC cost ©(n))

— The first key A[1] is the maximum and thus should be in
the last position when sorted

— Exchange A[1] with A[n], and decrease heap size by 1

— Max-Heapify the array A[l..(n — 1)],
which is an almost-heap

e An example: A[1..10] ={4,1,7,9,3,10,14,8,2,16}

Exchange A[1] and A[10], decrement Heapsize to 9, and Max-
Heapify it (re-install the heap property):

10
O

HOREORBLCRG
8@ 9@10

Lecture 11: Heapsort

Heapsort algorithm (cont'd):
e Heapsort is a data structure algorithm.

e The ideas:
— Build the array into a heap (WC cost ©(n))

— The first key A[1] is the maximum and thus should be in
the last position when sorted

— Exchange A[1] with A[n], and decrease heap size by 1

— Max-Heapify the array A[l..(n — 1)],
which is an almost-heap

e An example: A[1..10] ={4,1,7,9,3,10,14,8,2,16}

Resultant tree: Heapsize = 9:
1(14
2(9) 5(10

LORLORBLONUG
8@ 9@10

Lecture 11:
Heapsort algorithm (cont'd):

e Pseudocode:

procedure Heapsort(A) **p 136
**post-condition: sorted array

Build-Max-Heap(A)
for i+ length[A] downto 2 do
exchange A[l] « A[i]
heapsize(A) < heapsize(A) — 1
Max-Heapify(A, 1)
e WC running time analysis:
— Build-Max-Heap in 2n —Ign — 2
— For each i, Max-Heapify in Igz
sum to Y " lgi€ ©(nlogn)

— So, in total ©(nlogn)

e Questions:

Heapsort

1. What is the Worst Case (array) for Build-Max-Heap?
2. What is the Worst Case (heap) for the for loop?
3. What is the Worst Case (array) for Heapsort?

Lecture 11: Heapsort

Heapsort algorithm (cont'd):

e BC running time analysis:

— all keys equal:
o(n)

— all keys distinct:
©(nlogn) — next lecture

e AC running time analysis — very complicated, not required
— But when all keys distinct:
©(nlogn) — why 777

e Space requirement:

©(1) — in space sorting algorithm

e Correctness:

By Loop Invariants:
— correctness for Max-Heapify (which is a recursion)
— LI for Build-Max-Heap (p. 133)
— LI for heapsort (p. 136, Ex 6.4-2)

10

Lecture 11: Heapsort

Have you understood the lecture contents?

well

ok

not—-at-all

topic

0 O o O d

0 O o O d

0 O o O d

heap, almost-heap
Max-Heapify
Build-Max-Heap

heapsort algorithm & idea

heapsort analysis (WC running time)

11

