
Lecture 11: Heapsort & Its Analysis

Agenda:

• Heap recall:

– Heap: definition, property

– Max-Heapify

– Build-Max-Heap

• Heapsort algorithm

• Running time analysis

Reading:

• Textbook pages 127 – 138
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Lecture 11: Heapsort

(Binary-)Heap data structure (recall):

• An array A[1..n] of n comparable keys

either ‘≥’ or ‘≤’

• An implicit binary tree, where

– A[2j] is the left child of A[j]

– A[2j + 1] is the right child of A[j]

– A[b j
2
c] is the parent of A[j]

• Keys satisfy the max-heap property: A[b j
2
c] ≥ A[j]

• There are max-heap and min-heap. We use max-heap.

• A[1] is the maximum among the n keys.

• Viewing heap as a binary tree, height of the tree is h = blgnc.
Call the height of the heap.

[— the number of edges on the longest root-to-leaf path]

• A heap of height k can hold 2k —— 2k+1 − 1 keys.

Why ???

Since lgn− 1 < k ≤ lgn

⇐⇒ n < 2k+1 and 2k ≤ n

⇐⇒ 2k ≤ n < 2k+1
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Lecture 11: Heapsort

Max-Heapify (recall):

• It makes an almost-heap into a heap.

• Pseudocode:

procedure Max-Heapify(A, i) **p 130
**turn almost-heap into a heap
**pre-condition: tree rooted at A[i] is almost-heap
**post-condition: tree rooted at A[i] is a heap

lc← leftchild(i)
rc← rightchild(i)
if lc ≤ heapsize(A) and A[lc] > A[i] then

largest← lc
else

largest← i
if rc ≤ heapsize(A) and A[rc] > A[largest] then

largest← rc
if largest 6= i then

exchange A[i]↔ A[largest]
Max-Heapify(A, largest)

• WC running time: lgn.
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Lecture 11: Heapsort

Build-Max-Heap (recall):

• Given: an array of n keys A[1], A[2], . . . , A[n]

• Output: a permutation which is a heap

• Ideas:

Repeatedly apply Max-Heapify to nodes in the binary tree
representation

— bottom up

• Pseudocode:

procedure Build-Max-Heapify(A) **p 133
**turn an array into a heap

heapsize(A)← length[A]
for i←

⌊
length[A]

2

⌋
downto 1

do Max-Heapify(A, i)

• WC running time:

lgn+2(lgn−1)+22(lgn−2)+ . . .+2(lgn−1) ·1 = 2n− lgn−2.
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Lecture 11: Heapsort

Heapsort algorithm:

• Heapsort is a data structure algorithm.

• The ideas:

– Build the array into a heap (WC cost Θ(n))

– The first key A[1] is the maximum and thus should be in
the last position when sorted

– Exchange A[1] with A[n], and decrease heap size by 1

– Max-Heapify the array A[1..(n− 1)],

which is an almost-heap

• An example: A[1..10] = {4,1,7,9,3,10,14,8,2,16}
Build into a heap:
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Lecture 11: Heapsort

Heapsort algorithm (cont’d):

• Heapsort is a data structure algorithm.

• The ideas:

– Build the array into a heap (WC cost Θ(n))

– The first key A[1] is the maximum and thus should be in
the last position when sorted

– Exchange A[1] with A[n], and decrease heap size by 1

– Max-Heapify the array A[1..(n− 1)],

which is an almost-heap

• An example: A[1..10] = {4,1,7,9,3,10,14,8,2,16}
Heapsize = 10:
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Lecture 11: Heapsort

Heapsort algorithm (cont’d):

• Heapsort is a data structure algorithm.

• The ideas:

– Build the array into a heap (WC cost Θ(n))

– The first key A[1] is the maximum and thus should be in
the last position when sorted

– Exchange A[1] with A[n], and decrease heap size by 1

– Max-Heapify the array A[1..(n− 1)],

which is an almost-heap

• An example: A[1..10] = {4,1,7,9,3,10,14,8,2,16}
Exchange A[1] and A[10], decrement Heapsize to 9, and Max-
Heapify it (re-install the heap property):
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Lecture 11: Heapsort

Heapsort algorithm (cont’d):

• Heapsort is a data structure algorithm.

• The ideas:

– Build the array into a heap (WC cost Θ(n))

– The first key A[1] is the maximum and thus should be in
the last position when sorted

– Exchange A[1] with A[n], and decrease heap size by 1

– Max-Heapify the array A[1..(n− 1)],

which is an almost-heap

• An example: A[1..10] = {4,1,7,9,3,10,14,8,2,16}
Resultant tree: Heapsize = 9:
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Lecture 11: Heapsort

Heapsort algorithm (cont’d):

• Pseudocode:

procedure Heapsort(A) **p 136
**post-condition: sorted array

Build-Max-Heap(A)
for i← length[A] downto 2 do

exchange A[1]↔ A[i]
heapsize(A)← heapsize(A)− 1
Max-Heapify(A,1)

• WC running time analysis:

– Build-Max-Heap in 2n− lgn− 2

– For each i, Max-Heapify in lg i

sum to
∑n

i=2
lg i ∈ Θ(n logn)

– So, in total Θ(n logn)

• Questions:

1. What is the Worst Case (array) for Build-Max-Heap?

2. What is the Worst Case (heap) for the for loop?

3. What is the Worst Case (array) for Heapsort?
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Lecture 11: Heapsort

Heapsort algorithm (cont’d):

• BC running time analysis:

– all keys equal:

Θ(n)

– all keys distinct:

Θ(n logn) — next lecture

• AC running time analysis — very complicated, not required

– But when all keys distinct:

Θ(n logn) — why ???

• Space requirement:

Θ(1) — in space sorting algorithm

• Correctness:

By Loop Invariants:

– correctness for Max-Heapify (which is a recursion)

– LI for Build-Max-Heap (p. 133)

– LI for heapsort (p. 136, Ex 6.4-2)
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Lecture 11: Heapsort

Have you understood the lecture contents?

well ok not-at-all topic

� � � heap, almost-heap

� � � Max-Heapify

� � � Build-Max-Heap

� � � heapsort algorithm & idea

� � � heapsort analysis (WC running time)
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