
Lecture 7: Recurrences

Agenda:

• Iterated substitution — more examples

• Recursion trees — the second method

Reading:

• Textbook pages 62 – 72

1

Lecture 7: Recurrences

Solving the recurrence:(from last lecture)

• T (n) =
{

1 if n = 1
3QZ(n

2
) + 5 if n ≥ 2

• Again, Iterated Substitution

T (2k)
= 3× T (2k−1) + 5

= 3×
(
3× T (2k−2) + 5

)
+ 5

= 32 × T (2k−2) + 3× 5 + 5

= 32 ×
(
3× T (2k−3) + 5

)
+ 3× 5 + 5

= 33 × T (2k−3) + 32 × 5 + 3× 5 + 5

= . . .
= 3k × T (2k−k) + 3k−1 × 5 + 3k−2 × 5 + . . . + 3× 5 + 5

= 3k + 5×
(∑k−1

i=0
3i

)
= 3k + 5×

(
3k − 1

2

)
= 3.5× 3k − 2.5

• So, T (n) = 3.5× 3lgn − 2.5 = 3.5× nlg 3 − 2.5.

• Remember: prove by induction later.

2

Lecture 7: Recurrences

The exercise:

• Examine the running time of QZ(n) (uniform cost RAM)

Proc QZ(n)

if n > 1 then
a← n× n + 37
b← a× QZ(n

2
)

return QZ(n
2
)× QZ(n

2
) + n

else
return n× n

• Uniform cost RAM:

– Arithmetic, assignment 1 cycle

– Return, branch test 1 cycle

– Procedure call 1 cycle

• Proc QZ(n) time T (n) in cycles

if n > 1 then 2
a← n× n + 37 3
b← a× QZ(n

2
) 4 + T (n

2
)

return QZ(n
2
)× QZ(n

2
) + n 7 + T (n

2
) + T (n

2
)

else
return n× n 2

3

Lecture 7: Recurrences

QZ(n) running time:

• Claim: running time of QZ(n) ∈ Θ(T (n))

•

T (n) =
{

4, if n = 1
3× T (n

2
) + 16, if n ≥ 2

• Solving T (n)?

Solving T (n) for n = 2k — iterated substitution

– Substitution enough steps to see the pattern

– Guess the pattern and prove by induction

T (n = 2k)
= 3× T (2k

2
) + 16 definition

= 3× T (2k−1) + 16 arithmetic
= 3×

(
3× T (2k−1

2
) + 16

)
+ 16 definition

= 32 × T (2k−2) + 3× 16 + 16 arithmetic
= 32 ×

(
3× T (2k−2

2
) + 16

)
+ 3× 16 + 16 definition

= 33 × T (2k−3) + 32 × 16 + 3× 16 + 16 arithmetic
= 33 ×

(
3× T (2k−3

2
) + 16

)
+ 32 × 16 + 3× 16 + 16 definition

= 34 × T (2k−4) + 33 × 16 + 32 × 16 + 3× 16 + 16 arithmetic
. . .
= 3k × T (2k−k) + 3k−1 × 16 + 3k−2 × 16+

. . . + 32 × 16 + 3× 16 + 16 guess

= 3k × 4 + 16×
3k − 1

3− 1
= 12× 3k − 8

• So, next to prove T (2k) = 12× 3k − 8, for k ≥ 0

4

Lecture 7: Recurrences

Proof by induction T (2k) = 12× 3k − 8:

• Base step: k = 0

According to guessed T (20) = 12− 8 = 4.

So, it holds for base case.

• Inductive step:

Assume that T (2k−1) = 12× 3k−1 − 8.

By recurrence relation

T (2k) = 3× T (
2k

2
) + 16 = 3× T (2k−1) + 16,

so

T (2k) = 3×
(
12× 3k−1 − 8

)
+16 = 12×3k−24+16 = 12×3k−8.

Thus, it holds for inductive step too.

• Therefore, T (2k) = 12× 3k − 8 holds for any k ≥ 0.

5

Lecture 7: Recurrences

Summary:

• Running time analysis of QZ(n) =⇒
analysis of function

T (n) =
{

c1, if n = 1
3× T (n

2
) + c2, if n ≥ 2

• Solving T (n)

1. Iterated (Repeated) substitution

2. Guess the pattern and get the closed form

3. Proof by induction

• T (n = 2k) = (c1 + c2

2
)3k − c2

2
∈ Θ(3k) = Θ(3lgn) = Θ(nlg 3).

• Can show: T (n) ∈ Θ(nlg 3) for all n ≥ 1

— dealing with floor/ceiling

6

Lecture 7: Recurrences

Merge sort analysis:

• Recurrence (last lecture):

T (n) =
{

0 if n = 1
(n− 1) + 2× T (n

2
) if n ≥ 2

• Guessed closed form and proved by induction (last lecture):

T (n) = n(lgn− 1) + 1, n ≥ 1

• Look at the partition tree:

(1, n)

(1, n
2
) (n

2
+ 1, n)

(1, n
4
) (n

4
+ 1, n

2
) (n

2
+ 1, 3n

4
) (3n

4
+ 1, n)

.

(1,2) (3,4) (n− 1, n)

(1,1) (2,2) (3,3) (4,4) . . . (n− 1, n− 1) (n, n)

�
���

H
HHH

�
��

@
@@

�
��

@
@@

�
��

@
@@

�
��

@
@@

�
��

@
@@

• Question: the number of KC per cell?

7

Lecture 7: Recurrences

Merge sort recursion tree (KC per cell):

Assuming merge(n) takes ∼ n KC:

(1, n)

(1, n
2
) (n

2
+ 1, n)

(1, n
4
) (n

4
+ 1, n

2
) (n

2
+ 1, 3n

4
) (3n

4
+ 1, n)

.

(1,2) (3,4) (n− 1, n)

(1,1) (2,2) (3,3) (4,4) . . . (n− 1, n− 1) (n, n)

����

HHHH

�
��

@
@@

�
��

@
@@

�
��

@
@@

�
��

@
@@

�
��

@
@@

level 1: n

level 2: n

level 3: n

. . .

level k: n

level k + 1: 0

total: kn

Where k = lgn!!!

8

Lecture 7: Recurrences

Solving recurrence relations:

• Iterated substitution (done)

• Recursion tree (done)

• Master theorem (next)

• Divide-and-conquer: what form of recurrence relation does it
have?

• Typical procedure:

Proc dnq(n)

.
dnq(n

b
) . . . dnq(n

b
)

.
return

end dnq

• For the call dnq(n) assume:

– running time (excluding recursive calls) is nc

– there are a total of a calls to dnq(n
b
)

• Recurrence relation for total time T (n)

T (n) =
{

bounded, if n < b
a× T (n

b
) + nc, if n ≥ b

• Closed form solution?

– Iterated substitution !!!

– Simplifying assumption to n = bk

9

Lecture 7: Recurrences

Have you understood the lecture contents?

well ok not-at-all topic

� � � iterated substitution method

� � � closed form guessing

� � � prove by math induction

� � � recursion tree

� � � operations per cell in the tree

� � � general divide-and-conquer recurrence

10

