# Lecture 7: Recurrences 

Agenda:

- Iterated substitution - more examples
- Recursion trees - the second method


## Reading:

- Textbook pages 62-72

Solving the recurrence:(from last lecture)

- $T(n)= \begin{cases}1 & \text { if } n=1 \\ 3 \mathrm{QZ}\left(\frac{n}{2}\right)+5 & \text { if } n \geq 2\end{cases}$
- Again, Iterated Substitution

$$
\begin{aligned}
& T\left(2^{k}\right) \\
= & 3 \times T\left(2^{k-1}\right)+5 \\
= & 3 \times\left(3 \times T\left(2^{k-2}\right)+5\right)+5 \\
= & 3^{2} \times T\left(2^{k-2}\right)+3 \times 5+5 \\
= & 3^{2} \times\left(3 \times T\left(2^{k-3}\right)+5\right)+3 \times 5+5 \\
= & 3^{3} \times T\left(2^{k-3}\right)+3^{2} \times 5+3 \times 5+5 \\
= & \cdots \\
= & 3^{k} \times T\left(2^{k-k}\right)+3^{k-1} \times 5+3^{k-2} \times 5+\ldots+3 \times 5+5 \\
= & 3^{k}+5 \times\left(\sum_{i=0}^{k-1} 3^{i}\right) \\
= & 3^{k}+5 \times\left(\frac{3^{k}-1}{2}\right) \\
= & 3.5 \times 3^{k}-2.5
\end{aligned}
$$

- So, $T(n)=3.5 \times 3^{\lg n}-2.5=3.5 \times n^{\lg 3}-2.5$.
- Remember: prove by induction later.


## The exercise:

- Examine the running time of $\mathrm{QZ}(n)$ (uniform cost RAM)

```
\(\operatorname{Proc} \mathrm{QZ}(n)\)
if \(n>1\) then
    \(a \leftarrow n \times n+37\)
    \(b \leftarrow a \times \operatorname{QZ}\left(\frac{n}{2}\right)\)
    return \(\mathrm{QZ}\left(\frac{n}{2}\right) \times \mathrm{QZ}\left(\frac{n}{2}\right)+n\)
else
    return \(n \times n\)
```

- Uniform cost RAM:
- Arithmetic, assignment
1 cycle
- Return, branch test
1 cycle
- Procedure call
1 cycle
- $\quad \operatorname{Proc} \mathrm{QZ}(n)$
time $T(n)$ in cycles

$$
\text { if } n>1 \text { then }
$$2

$a \leftarrow n \times n+37 \quad 3$
$b \leftarrow a \times \operatorname{QZ}\left(\frac{n}{2}\right)$
$4+T\left(\frac{n}{2}\right)$
return $\mathrm{QZ}\left(\frac{n}{2}\right) \times \mathrm{QZ}\left(\frac{n}{2}\right)+n \quad 7+T\left(\frac{n}{2}\right)+T\left(\frac{n}{2}\right)$ else
return $n \times n$
2

Lecture 7: Recurrences
QZ $(n)$ running time:

- Claim: running time of $\mathrm{QZ}(n) \in \Theta(T(n))$

$$
T(n)= \begin{cases}4, & \text { if } n=1 \\ 3 \times T\left(\frac{n}{2}\right)+16, & \text { if } n \geq 2\end{cases}
$$

- Solving $T(n)$ ?

Solving $T(n)$ for $n=2^{k}$ - iterated substitution

- Substitution enough steps to see the pattern
- Guess the pattern and prove by induction

$$
\begin{aligned}
& T\left(n=2^{k}\right) \\
= & 3 \times T\left(\frac{2^{k}}{2}\right)+16 \\
= & 3 \times T\left(2^{k-1}\right)+16 \\
= & 3 \times\left(3 \times T\left(\frac{k^{k-1}}{2}\right)+16\right)+16 \\
= & 3^{2} \times T\left(2^{k-2}\right)+3 \times 16+16 \\
= & 3^{2} \times\left(3 \times T\left(\frac{2^{k-2}}{2}\right)+16\right)+3 \times 16+16 \\
= & 3^{3} \times T\left(2^{k-3}\right)+3^{2} \times 16+3 \times 16+16 \\
= & 3^{3} \times\left(3 \times T\left(\frac{2^{k-3}}{2}\right)+16\right)+3^{2} \times 16+3 \times 16+16 \\
= & 3^{4} \times T\left(2^{k-4}\right)+3^{3} \times 16+3^{2} \times 16+3 \times 16+16 \\
= & 3^{k} \times T\left(2^{k-k}\right)+3^{k-1} \times 16+3^{k-2} \times 16+ \\
& \cdots+3^{2} \times 16+3 \times 16+16 \\
= & 3^{k} \times 4+16 \times \frac{3^{k}-1}{3-1} \\
= & 12 \times 3^{k}-8
\end{aligned}
$$

- So, next to prove $T\left(2^{k}\right)=12 \times 3^{k}-8$, for $k \geq 0$

Proof by induction $T\left(2^{k}\right)=12 \times 3^{k}-8$ :

- Base step: $k=0$

According to guessed $T\left(2^{0}\right)=12-8=4$.
So, it holds for base case.

- Inductive step:

Assume that $T\left(2^{k-1}\right)=12 \times 3^{k-1}-8$.
By recurrence relation

$$
T\left(2^{k}\right)=3 \times T\left(\frac{2^{k}}{2}\right)+16=3 \times T\left(2^{k-1}\right)+16
$$

so
$T\left(2^{k}\right)=3 \times\left(12 \times 3^{k-1}-8\right)+16=12 \times 3^{k}-24+16=12 \times 3^{k}-8$.
Thus, it holds for inductive step too.

- Therefore, $T\left(2^{k}\right)=12 \times 3^{k}-8$ holds for any $k \geq 0$.


## Summary:

- Running time analysis of $\mathrm{QZ}(n) \Longrightarrow$ analysis of function

$$
T(n)= \begin{cases}c_{1}, & \text { if } n=1 \\ 3 \times T\left(\frac{n}{2}\right)+c_{2}, & \text { if } n \geq 2\end{cases}
$$

- Solving $T(n)$

1. Iterated (Repeated) substitution
2. Guess the pattern and get the closed form
3. Proof by induction

- $T\left(n=2^{k}\right)=\left(c_{1}+\frac{c_{2}}{2}\right) 3^{k}-\frac{c_{2}}{2} \in \Theta\left(3^{k}\right)=\Theta\left(3^{\lg n}\right)=\Theta\left(n^{\lg 3}\right)$.
- Can show: $T(n) \in \Theta\left(n^{\lg 3}\right)$ for all $n \geq 1$
- dealing with floor/ceiling


## Lecture 7: Recurrences

Merge sort analysis:

- Recurrence (last lecture):

$$
T(n)= \begin{cases}0 & \text { if } n=1 \\ (n-1)+2 \times T\left(\frac{n}{2}\right) & \text { if } n \geq 2\end{cases}
$$

- Guessed closed form and proved by induction (last lecture):

$$
T(n)=n(\lg n-1)+1, n \geq 1
$$

- Look at the partition tree:

- Question: the number of KC per cell?


## Lecture 7: Recurrences

Merge sort recursion tree (KC per cell):
Assuming merge $(n)$ takes $\sim n \mathrm{KC}$ :


Where $k=\lg n!!!$

Solving recurrence relations:

- Iterated substitution (done)
- Recursion tree (done)
- Master theorem (next)
- Divide-and-conquer: what form of recurrence relation does it have?
- Typical procedure:

```
Proc dnq(n)
    dnq(\frac{n}{b})\ldots..dnq(\frac{n}{b})
    return
    end dnq
```

- For the call dnq( $n$ ) assume:
- running time (excluding recursive calls) is $n^{c}$
- there are a total of $a$ calls to $\operatorname{dnq}\left(\frac{n}{b}\right)$
- Recurrence relation for total time $T(n)$

$$
T(n)= \begin{cases}\text { bounded, }, & \text { if } n<b \\ a \times T\left(\frac{n}{b}\right)+n^{c}, & \text { if } n \geq b\end{cases}
$$

- Closed form solution?
- Iterated substitution !!!
- Simplifying assumption to $n=b^{k}$


## Lecture 7: Recurrences

Have you understood the lecture contents?

| well | ok | not-at-all | topic |
| :--- | :--- | :--- | :--- |
| $\square$ | $\square$ | $\square$ | iterated substitution method |
| $\square$ | $\square$ | $\square$ | closed form guessing |
| $\square$ | $\square$ | $\square$ | prove by math induction |
| $\square$ | $\square$ | $\square$ | recursion tree |
| $\square$ | $\square$ | $\square$ | operations per cell in the tree |
| $\square$ | $\square$ | $\square$ | general divide-and-conquer recurrence |

