
Lecture 6: Recurrences

Agenda:

• Recurrence relations

– Merge sort as an example

• Solving recurrences

– Key method

— iterated substitution/replacement

– Merge sort as an example

– More examples & notes

Reading:

• Textbook pages 62 – 67, Appendix A.

1



Lecture 6: Recurrences

Recurrence relations — Recurrences

• Recurrence relation:

A relation defined recursively — in terms of itself. e.g.,

f(n) =
{

1, if n = 1
n + f(n− 1), if n ≥ 2

• Must have base case and general case.

• Arise in the analysis of Divide-and-Conquer algorithms

• How are recurrences derived?

• How are recurrences solved?

– iterated substitution/replacement method

1. particular cases: solve small examples exactly

2. general case: guess the answer, prove by induction

– recurrence tree method (future lectures)

– master theorem method (future lectures)

2



Lecture 6: Recurrences

Iterated substitution: an easy example

• f(n) =
{

1, if n = 1
n + f(n− 1), if n ≥ 2

• Particular cases:

n 1 2 3 4 5 6 7

f(n) 1 2 + 1 3 + 3 4 + 6 5 + 10 6 + 15 7 + 21
1 3 6 10 15 21 28

• General case:

f(n) = n + f(n− 1)
= n + (n− 1) + f(n− 2)
= n + (n− 1) + (n− 2) + f(n− 3)
= n + (n− 1) + (n− 2) + (n− 3) + f(n− 4)
= . . .
= n + (n− 1) + (n− 2) + (n− 3) + . . . + 2 + f(1)

=
n∑

i=1

i

Therefore, we guess that f(n) =
n∑

i=1

i

(this is NOT a proof, yet).

Prove it by induction.

3



Lecture 6: Recurrences

Iterated substitution: an easy example (cont’d)

• Prove that f(n) =
n∑

i=1

i by induction.

– Base case: n = 1

f(1) = 1 according to guessed, which is the same as
defined. So it holds in base case.

– Inductive step:

Assume f(k) =
k∑

i=1

i, k ≥ 1. Want to show f(k+1) =
k+1∑
i=1

i

by using the recurrence relation (only).

f(k + 1) = (k + 1) + f(k) = (k + 1) +
k∑

i=1

i =
k+1∑
i=1

i. Done!

– So, for all n ≥ 1, f(n) =
n∑

i=1

i.

• So,

f(n) =

n∑
i=1

i =
n(n + 1)

2
, n ≥ 1.

Another math induction (exercise).

• n(n+1)
2

is the closed form for the recurrence.

• You NEED to get the closed forms, as simple as possible!!!

4



Lecture 6: Recurrences

Recurrence relations — merge sort analysis

• Merge sort recall:

– Divide the whole list into 2 sublists of equal size;

– Recursively merge sort the 2 sublists;

– Combine the 2 sorted sublists into a sorted list.

• Assumptions:

– n — number of keys in the whole list — a power of 2

– T (n) — WC running time

– Operations under consideration: KC

• Deriving recurrence relation:

– Merge sort on 2 sublists 2× T (n
2
)

– Assembling needs n− 1 KC (in the WC)

– T (n) = (n− 1) + 2× T (n
2
)

– Base case: T (1) = 0.

• Solving recurrence relation:

5



Lecture 6: Recurrences

Merge sort analysis — solving the recurrence relation

• Particular case:
T (1) = 0,
T (2) = 1,
. . .

• General case:

T (n) = (n− 1) + 2× T (n
2
)

= (n− 1) + 2×
(
(n
2
− 1) + 2× T (n

4
)
)

= . . .

T (2k)
= (n− 1) + 2× T (2k−1)
= (n− 1) + 2×

(
(n− 1) + 2× T (2k−2)

)
= (n− 1) + 2(n− 1) + 22 × T (2k−2)
= (n− 1) + 2(n− 1) + 22 ×

(
(n− 1) + 2× T (2k−3)

)
= (n− 1) + 2(n− 1) + 22(n− 1) + 23 × T (2k−3)
= . . .
= (n− 1) + 2(n− 1) + 22(n− 1) + . . . + 2k−1(n− 1) + 2k × T (2k−k)

=
(∑k−1

i=0
2i

)
(n− 1) + 2k × T (1)

= (2k − 1)(n− 1)
= (n− 1)2

Wrong !!!
6



Lecture 6: Recurrences

Merge sort analysis — solving the recurrence relation

• Particular case:
T (1) = 0,
T (2) = 1,
. . .

• General case:

T (n) = (n− 1) + 2× T (n
2
)

= (n− 1) + 2×
(
(n
2
− 1) + 2× T (n

4
)
)

= . . .

T (2k)
= (2k − 1) + 2× T (2k−1)
= (2k − 1) + 2×

(
(2k−1 − 1) + 2× T (2k−2)

)
= (2k − 1) + (2k − 2) + 22 × T (2k−2)
= (2k − 1) + (2k − 2) + 22 ×

(
(2k−2 − 1) + 2× T (2k−3)

)
= (2k − 1) + (2k − 2) + (2k − 22) + 23 × T (2k−3)
= (2k − 20) + (2k − 21) + (2k − 22) + 23 × T (2k−3)
= (2k − 20) + (2k − 21) + (2k − 22) + (2k − 23) + 24 × T (2k−4)
= . . .
= (2k − 20) + (2k − 21) + (2k − 22) + . . . + (2k − 2k−1) + 2k × T (2k−k)
= (2k − 20) + (2k − 21) + (2k − 22) + . . . + (2k − 2k−1)

= k × 2k −
∑k−1

i=0
2i

= (k − 1)2k + 1

Since n = 2k, we have k = lgn. So, T (n) = n(lgn− 1) + 1.

• Notes:
1. Variable substitution makes guessing easy ...
2. Later on recurrence solving always assume n being some

power, whenever necessary (ignore floor and ceiling).
3. Prove by induction.
4. Need to transform back to original variable.

7



Lecture 6: Recurrences

Closed form proof by induction:

• Recurrence:

T (n) =
{

0 if n = 1
(n− 1) + 2× T (n

2
) if n ≥ 2

Guessed closed form:

T (n) = n(lgn− 1) + 1, n ≥ 1

• Assuming n = 2k, k ≥ 0

• Base case:

According to guessed, T (1) = 0.

Holds in base case.

• Inductive step:

Assuming that T (2k) = 2k(k − 1) + 1, k ≥ 0, want to show
T (2k+1) = 2k+1k + 1.

By recurrence relation,

T (2k+1) = (2k+1 − 1) + 2× T (2k)
= (2k+1 − 1) + 2k+1(k − 1) + 2
= k2k+1 + 1.

Done!

• Conclusion: merge sort WC running time is Θ(n logn).

• What is the worst case? or, what are those instances on which
mergesort performs exactly WC number of KC?

• Question: BC/AC running time, in terms of KC?

8



Lecture 6: Recurrences

Conclusions

• Divide-and-conquer algorithm often recursive

• Analysis of recursive algorithm =⇒ solving recurrence

An exercise:

• Examine the running time of QZ(n) (uniform cost RAM)

Proc QZ(n)

if n > 1 then
a← n× n + 37
b← a× QZ(n

2
)

return QZ(n
2
)× QZ(n

2
) + n

else
return n× n

• A(n) — during QZ(n), number of additions

• M(n) — during QZ(n), number of multiplications

• T (n) = A(n) + M(n)

• Claim: QZ(n) running time ∈ Θ(T (n))

• A(n) =? M(n) =? T (n) =?

• Hint: T (n) =
{

1 if n = 1
3QZ(n

2
) + 5 if n ≥ 2

Solve T (n) !!!

9



Lecture 6: Recurrences

Have you understood the lecture contents?

well ok not-at-all topic

� � � iterated substitution (IS) method

� � � closed form guessing

� � � proof by math induction

� � � recurrence deriving

� � � variable substitution

� � � solving recurrence by IS

10


