Lecture 6: Recurrences

Agenda:

- Recurrence relations
 - Merge sort as an example
- Solving recurrences
 - Key method
 - iterated substitution/replacement
 - Merge sort as an example
 - More examples & notes

Reading:

• Textbook pages 62 – 67, Appendix A.

Recurrence relations — Recurrences

• *Recurrence relation*:

A relation defined recursively — in terms of itself. e.g.,

$$f(n) = \begin{cases} 1, & \text{if } n = 1 \\ n + f(n-1), & \text{if } n \ge 2 \end{cases}$$

- Must have base case and general case.
- Arise in the analysis of Divide-and-Conquer algorithms
- How are recurrences derived?
- How are recurrences solved?
 - iterated substitution/replacement method
 - 1. particular cases: solve small examples exactly
 - 2. general case: guess the answer, prove by induction
 - recurrence tree method (future lectures)
 - master theorem method (future lectures)

Iterated substitution: an easy example

•
$$f(n) = \begin{cases} 1, & \text{if } n = 1 \\ n + f(n-1), & \text{if } n \ge 2 \end{cases}$$

• Particular cases:

n	1	2	3	4	5	6	7
f(n)	1	2+1	3+3	4 + 6	5 + 10	6 + 15	7 + 21
	1	3	6	10	15	21	28

• General case:

$$f(n) = n + f(n-1)$$

= $n + (n-1) + f(n-2)$
= $n + (n-1) + (n-2) + f(n-3)$
= $n + (n-1) + (n-2) + (n-3) + f(n-4)$
= \dots
= $n + (n-1) + (n-2) + (n-3) + \dots + 2 + f(1)$
= $\sum_{i=1}^{n} i$

Therefore, we guess that $f(n) = \sum_{i=1}^{n} i$ (this is NOT a proof, yet). Prove it by induction. Iterated substitution: an easy example (cont'd)

- Prove that $f(n) = \sum_{i=1}^{n} i$ by induction.
 - Base case: n = 1f(1) = 1 according to guessed, which is the same as defined. So it holds in base case.
 - Inductive step:

Assume $f(k) = \sum_{i=1}^{k} i$, $k \ge 1$. Want to show $f(k+1) = \sum_{i=1}^{k+1} i$ by using the recurrence relation (only).

$$f(k+1) = (k+1) + f(k) = (k+1) + \sum_{i=1}^{k} i = \sum_{i=1}^{k+1} i.$$
 Done!

- So, for all
$$n \ge 1$$
, $f(n) = \sum_{i=1}^{n} i$.

• So,

$$f(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, n \ge 1.$$

Another math induction (exercise).

- $\frac{n(n+1)}{2}$ is the *closed form* for the recurrence.
- You NEED to get the closed forms, as simple as possible!!!

Lecture 6: Recurrences

Recurrence relations — merge sort analysis

- Merge sort recall:
 - Divide the whole list into 2 sublists of equal size;
 - Recursively merge sort the 2 sublists;
 - Combine the 2 sorted sublists into a sorted list.
- Assumptions:
 - n number of keys in the whole list a power of 2
 - T(n) WC running time
 - Operations under consideration: KC
- Deriving recurrence relation:
 - Merge sort on 2 sublists $2 \times T(\frac{n}{2})$
 - Assembling needs n 1 KC (in the WC)
 - $T(n) = (n-1) + 2 \times T(\frac{n}{2})$
 - Base case: T(1) = 0.
- Solving recurrence relation:

Merge sort analysis — solving the recurrence relation

- Particular case: T(1) = 0, T(2) = 1,...
- General case:

$$T(n) = (n-1) + 2 \times T(\frac{n}{2}) = (n-1) + 2 \times \left((\frac{n}{2} - 1) + 2 \times T(\frac{n}{4}) \right) = \dots$$

$$T(2^{k}) = (n-1) + 2 \times T(2^{k-1})
= (n-1) + 2 \times ((n-1) + 2 \times T(2^{k-2}))
= (n-1) + 2(n-1) + 2^{2} \times T(2^{k-2})
= (n-1) + 2(n-1) + 2^{2} \times ((n-1) + 2 \times T(2^{k-3}))
= (n-1) + 2(n-1) + 2^{2}(n-1) + 2^{3} \times T(2^{k-3})
= ...
= (n-1) + 2(n-1) + 2^{2}(n-1) + ... + 2^{k-1}(n-1) + 2^{k} \times T(2^{k-k})
= (\sum_{i=0}^{k-1} 2^{i}) (n-1) + 2^{k} \times T(1)
= (2^{k} - 1)(n-1)
= (n-1)^{2}$$

Wrong !!!

Merge sort analysis — solving the recurrence relation

- Particular case: T(1) = 0, T(2) = 1,...
- General case:

$$T(n) = (n-1) + 2 \times T(\frac{n}{2}) = (n-1) + 2 \times \left((\frac{n}{2} - 1) + 2 \times T(\frac{n}{4}) \right) = \dots$$

$$T(2^{k}) = (2^{k} - 1) + 2 \times T(2^{k-1}) = (2^{k} - 1) + 2 \times ((2^{k-1} - 1) + 2 \times T(2^{k-2})) = (2^{k} - 1) + (2^{k} - 2) + 2^{2} \times T(2^{k-2}) = (2^{k} - 1) + (2^{k} - 2) + 2^{2} \times ((2^{k-2} - 1) + 2 \times T(2^{k-3})) = (2^{k} - 1) + (2^{k} - 2) + (2^{k} - 2^{2}) + 2^{3} \times T(2^{k-3}) = (2^{k} - 2^{0}) + (2^{k} - 2^{1}) + (2^{k} - 2^{2}) + 2^{3} \times T(2^{k-3}) = (2^{k} - 2^{0}) + (2^{k} - 2^{1}) + (2^{k} - 2^{2}) + (2^{k} - 2^{3}) + 2^{4} \times T(2^{k-4}) = \dots = (2^{k} - 2^{0}) + (2^{k} - 2^{1}) + (2^{k} - 2^{2}) + \dots + (2^{k} - 2^{k-1}) + 2^{k} \times T(2^{k-k}) = (2^{k} - 2^{0}) + (2^{k} - 2^{1}) + (2^{k} - 2^{2}) + \dots + (2^{k} - 2^{k-1}) = k \times 2^{k} - \sum_{i=0}^{k-1} 2^{i} = (k-1)2^{k} + 1$$

Since $n = 2^k$, we have $k = \lg n$. So, $T(n) = n(\lg n - 1) + 1$.

- Notes:
 - 1. Variable substitution makes guessing easy ...
 - 2. Later on recurrence solving always assume n being some power, whenever necessary (ignore floor and ceiling).
 - 3. Prove by induction.
 - 4. Need to transform back to original variable.

Closed form proof by induction:

• Recurrence:

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ (n-1) + 2 \times T(\frac{n}{2}) & \text{if } n \ge 2 \end{cases}$$

Guessed closed form:

$$T(n) = n(\lg n - 1) + 1, n \ge 1$$

- Assuming $n = 2^k, k \ge 0$
- Base case:

According to guessed, T(1) = 0. Holds in base case.

• Inductive step:

Assuming that $T(2^k) = 2^k(k-1) + 1$, $k \ge 0$, want to show $T(2^{k+1}) = 2^{k+1}k + 1$.

By recurrence relation,

$$T(2^{k+1}) = (2^{k+1} - 1) + 2 \times T(2^k)$$

= $(2^{k+1} - 1) + 2^{k+1}(k-1) + 2$
= $k2^{k+1} + 1$.

Done!

- Conclusion: merge sort WC running time is $\Theta(n \log n)$.
- What is the worst case? or, what are those instances on which mergesort performs exactly WC number of KC?
- Question: BC/AC running time, in terms of KC?

Conclusions

- Divide-and-conquer algorithm often recursive
- Analysis of recursive algorithm \implies solving recurrence

An exercise:

• Examine the running time of QZ(n) (uniform cost RAM)

```
Proc QZ(n)

if n > 1 then

a \leftarrow n \times n + 37

b \leftarrow a \times QZ(\frac{n}{2})

return QZ(\frac{n}{2}) \times QZ(\frac{n}{2}) + n

else

return n \times n
```

- A(n) during QZ(n), number of additions
- M(n) during QZ(n), number of multiplications

•
$$T(n) = A(n) + M(n)$$

• Claim: QZ(n) running time $\in \Theta(T(n))$

•
$$A(n) =? M(n) =? T(n) =?$$

• Hint: $T(n) = \begin{cases} 1 & \text{if } n = 1\\ 3QZ(\frac{n}{2}) + 5 & \text{if } n \ge 2 \end{cases}$ Solve T(n) !!!

Lecture 6: Recurrences

Have you understood the lecture contents?

well	ok	not-at-all	topic
			iterated substitution (IS) method
			closed form guessing
			proof by math induction
			recurrence deriving
			variable substitution
			solving recurrence by IS