Lecture 6: Recurrences

Agenda:

- Recurrence relations
- Merge sort as an example
- Solving recurrences
- Key method
- iterated substitution/replacement
- Merge sort as an example
- More examples \& notes

Reading:

- Textbook pages $62-67$, Appendix A.

Recurrence relations - Recurrences

- Recurrence relation:

A relation defined recursively - in terms of itself. e.g.,

$$
f(n)= \begin{cases}1, & \text { if } n=1 \\ n+f(n-1), & \text { if } n \geq 2\end{cases}
$$

- Must have base case and general case.
- Arise in the analysis of Divide-and-Conquer algorithms
- How are recurrences derived?
- How are recurrences solved?
- iterated substitution/replacement method

1. particular cases: solve small examples exactly
2. general case: guess the answer, prove by induction

- recurrence tree method (future lectures)
- master theorem method (future lectures)

Iterated substitution: an easy example

- $f(n)= \begin{cases}1, & \text { if } n=1 \\ n+f(n-1), & \text { if } n \geq 2\end{cases}$
- Particular cases:

n	1	2	3	4	5	6	7
$f(n)$	1	$2+1$	$3+3$	$4+6$	$5+10$	$6+15$	$7+21$
	1	3	6	10	15	21	28

- General case:

$$
\begin{aligned}
f(n) & =n+f(n-1) \\
& =n+(n-1)+f(n-2) \\
& =n+(n-1)+(n-2)+f(n-3) \\
& =n+(n-1)+(n-2)+(n-3)+f(n-4) \\
& =\cdots+(n-1)+(n-2)+(n-3)+\ldots+2+f(1) \\
& =\sum_{i=1}^{n} i
\end{aligned}
$$

Therefore, we guess that $f(n)=\sum_{i=1}^{n} i$ (this is NOT a proof, yet).
Prove it by induction.

Iterated substitution: an easy example (cont'd)

- Prove that $f(n)=\sum_{i=1}^{n} i$ by induction.
- Base case: $n=1$
$f(1)=1$ according to guessed, which is the same as defined. So it holds in base case.
- Inductive step:

Assume $f(k)=\sum_{i=1}^{k} i, k \geq 1$. Want to show $f(k+1)=\sum_{i=1}^{k+1} i$ by using the recurrence relation (only).
$f(k+1)=(k+1)+f(k)=(k+1)+\sum_{i=1}^{k} i=\sum_{i=1}^{k+1} i$. Done!

- So, for all $n \geq 1, f(n)=\sum_{i=1}^{n} i$.
- So,

$$
f(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, n \geq 1
$$

Another math induction (exercise).

- $\frac{n(n+1)}{2}$ is the closed form for the recurrence.
- You NEED to get the closed forms, as simple as possible!!!

Recurrence relations - merge sort analysis

- Merge sort recall:
- Divide the whole list into 2 sublists of equal size;
- Recursively merge sort the 2 sublists;
- Combine the 2 sorted sublists into a sorted list.
- Assumptions:
- n - number of keys in the whole list - a power of 2
- $T(n)$ - WC running time
- Operations under consideration: KC
- Deriving recurrence relation:
- Merge sort on 2 sublists $2 \times T\left(\frac{n}{2}\right)$
- Assembling needs $n-1$ KC (in the WC)
$-T(n)=(n-1)+2 \times T\left(\frac{n}{2}\right)$
- Base case: $T(1)=0$.
- Solving recurrence relation:

Lecture 6: Recurrences

Merge sort analysis - solving the recurrence relation

- Particular case:
$T(1)=0$,
$T(2)=1$,
- General case:

$$
\begin{aligned}
T(n) & =(n-1)+2 \times T\left(\frac{n}{2}\right) \\
& =(n-1)+2 \times\left(\left(\frac{n}{2}-1\right)+2 \times T\left(\frac{n}{4}\right)\right) \\
& =\cdots
\end{aligned}
$$

$$
\begin{aligned}
& T\left(2^{k}\right) \\
= & (n-1)+2 \times T\left(2^{k-1}\right) \\
= & (n-1)+2 \times\left((n-1)+2 \times T\left(2^{k-2}\right)\right) \\
= & (n-1)+2(n-1)+2^{2} \times T\left(2^{k-2}\right) \\
= & (n-1)+2(n-1)+2^{2} \times\left((n-1)+2 \times T\left(2^{k-3}\right)\right) \\
= & (n-1)+2(n-1)+2^{2}(n-1)+2^{3} \times T\left(2^{k-3}\right) \\
= & \cdots \\
= & (n-1)+2(n-1)+2^{2}(n-1)+\ldots+2^{k-1}(n-1)+2^{k} \times T\left(2^{k-k}\right) \\
= & \left(\sum_{i=0}^{k-1} 2^{i}\right)(n-1)+2^{k} \times T(1) \\
= & (n-1)(n-1)
\end{aligned}
$$

Wrong !!!

Lecture 6: Recurrences
Merge sort analysis - solving the recurrence relation

- Particular case:
$T(1)=0$,
$T(2)=1$,
$T(2)=1$,
- General case:

$$
\begin{aligned}
T(n) & =(n-1)+2 \times T\left(\frac{n}{2}\right) \\
& =(n-1)+2 \times\left(\left(\frac{n}{2}-1\right)+2 \times T\left(\frac{n}{4}\right)\right) \\
& =\cdots
\end{aligned}
$$

$$
\begin{aligned}
& T\left(2^{k}\right) \\
&=\left(2^{k}-1\right)+2 \times T\left(2^{k-1}\right) \\
&=\left(2^{k}-1\right)+2 \times\left(\left(2^{k-1}-1\right)+2 \times T\left(2^{k-2}\right)\right) \\
&=\left(2^{k}-1\right)+\left(2^{k}-2\right)+2^{2} \times T\left(2^{k-2}\right) \\
&=\left(2^{k}-1\right)+\left(2^{k}-2\right)+2^{2} \times\left(\left(2^{k-2}-1\right)+2 \times T\left(2^{k-3}\right)\right) \\
&=\left(2^{k}-1\right)+\left(2^{k}-2\right)+\left(2^{k}-2^{2}\right)+2^{3} \times T\left(2^{k-3}\right) \\
&=\left(2^{k}-2^{0}\right)+\left(2^{k}-2^{1}\right)+\left(2^{k}-2^{2}\right)+2^{3} \times T\left(2^{k-3}\right) \\
&=\left(2^{k}-2^{0}\right)+\left(2^{k}-2^{1}\right)+\left(2^{k}-2^{2}\right)+\left(2^{k}-2^{3}\right)+2^{4} \times T\left(2^{k-4}\right) \\
&= \cdots \\
&=\left(2^{k}-2^{0}\right)+\left(2^{k}-2^{1}\right)+\left(2^{k}-2^{2}\right)+\ldots+\left(2^{k}-2^{k-1}\right)+2^{k} \times T\left(2^{k-k}\right) \\
&=\left(2^{k}-2^{0}\right)+\left(2^{k}-2^{1}\right)+\left(2^{k}-2^{2}\right)+\ldots+\left(2^{k}-2^{k-1}\right) \\
&= k \times 2^{k}-\sum_{i=0}^{k-1} 2^{i} \\
&=(k-1) 2^{k}+1
\end{aligned}
$$

Since $n=2^{k}$, we have $k=\lg n$. So, $T(n)=n(\lg n-1)+1$.

- Notes:

1. Variable substitution makes guessing easy ...
2. Later on recurrence solving always assume n being some power, whenever necessary (ignore floor and ceiling).
3. Prove by induction.
4. Need to transform back to original variable.

Closed form proof by induction:

- Recurrence:

$$
T(n)= \begin{cases}0 & \text { if } n=1 \\ (n-1)+2 \times T\left(\frac{n}{2}\right) & \text { if } n \geq 2\end{cases}
$$

Guessed closed form:

$$
T(n)=n(\lg n-1)+1, n \geq 1
$$

- Assuming $n=2^{k}, k \geq 0$
- Base case:

According to guessed, $T(1)=0$.
Holds in base case.

- Inductive step:

Assuming that $T\left(2^{k}\right)=2^{k}(k-1)+1, k \geq 0$, want to show $T\left(2^{k+1}\right)=2^{k+1} k+1$.
By recurrence relation,

$$
\begin{aligned}
T\left(2^{k+1}\right) & =\left(2^{k+1}-1\right)+2 \times T\left(2^{k}\right) \\
& =\left(2^{k+1}-1\right)+2^{k+1}(k-1)+2 \\
& =k 2^{k+1}+1
\end{aligned}
$$

Done!

- Conclusion: merge sort WC running time is $\Theta(n \log n)$.
- What is the worst case? or, what are those instances on which mergesort performs exactly WC number of KC?
- Question: $B C / A C$ running time, in terms of $K C$?

Conclusions

- Divide-and-conquer algorithm often recursive
- Analysis of recursive algorithm \Longrightarrow solving recurrence

An exercise:

- Examine the running time of $\mathrm{QZ}(n)$ (uniform cost RAM)

```
Proc QZ(n)
if n>1 then
    a\leftarrown\timesn+37
    b\leftarrowa\times\operatorname{QZ}(\frac{n}{2})
    return QZ (\frac{n}{2})\timesQZ(\frac{n}{2})+n
else
        return n\timesn
```

- $A(n)$ - during QZ (n), number of additions
- $M(n)$ - during $\mathrm{QZ}(n)$, number of multiplications
- $T(n)=A(n)+M(n)$
- Claim: QZ(n) running time $\in \Theta(T(n))$
- $A(n)=? M(n)=? T(n)=$?
- Hint: $T(n)= \begin{cases}1 & \text { if } n=1 \\ 3 Q Z\left(\frac{n}{2}\right)+5 & \text { if } n \geq 2\end{cases}$

Solve $T(n)$!!!

Have you understood the lecture contents? well ok not-at-all topic

\square	\square	\square	iterated substitution (IS) method
\square	\square	\square	closed form guessing
\square	\square	\square	proof by math induction
\square	\square	\square	recurrence deriving
\square	\square	\square	variable substitution
\square	\square	\square	

