Lecture 6: Recurrences
Agenda:

e Recurrence relations

— Merge sort as an example

e Solving recurrences

— Key method
— iterated substitution/replacement

— Merge sort as an example

— More examples & notes

Reading:

e Textbook pages 62 — 67, Appendix A.

Lecture 6: Recurrences
Recurrence relations — Recurrences

e Recurrence relation:

A relation defined recursively — in terms of itself. e.qg.,

1, ifn=1
f(”):{ n+ f(n—1), fn> 2

e Must have base case and general case.
e Arise in the analysis of Divide-and-Conquer algorithms
e How are recurrences derived?

e How are recurrences solved?

— iterated substitution/replacement method

1. particular cases: solve small examples exactly
2. general case: guess the answer, prove by induction
— recurrence tree method (future lectures)

— master theorem method (future lectures)

Lecture 6: Recurrences

Iterated substitution: an easy example

WO

ifn=1

n+ f(n—1), ifn>?2

e Particular cases:

n 1 2 3 4 5 6 7
f(n) 1 241 34+3 446 5410 6415 7421
1 3 6 10 15 21 28
e General case
f(n) = n+f(n-1)
= n+(n-1)+f(n-2)
= n+(n-1)4+Mn-2)+ f(n—-3)
= n+m-D+®-2)+0-3)+f(n-4)
= nt-D+n-2)+0-3)+...+2+ (1)

n
Therefore, we guess that f(n) = > i
i=1

(this is NOT a proof, yet).
Prove it by induction.

Lecture 6: Recurrences

Iterated substitution: an easy example (cont'd)

e Prove that f(n) =) i by induction.

=1

— Base case: n=1

f(1) = 1 according to guessed, which is the same as
defined. So it holds in base case.

— Inductive step:

k k+1
Assume f(k) = > 4, k> 1. Want to show f(k+1) =) i
=1 i=1
by using the recurrence relation (only).
k k+1
fl+1)=(k+1)+ f(k) = (k+1)+ > i= Y i. Donel
=1 =1

— So, foralln>1, f(n) = > i.

1=1

e SO,

f(n) :Zzzw’nz 1.
=1

Another math induction (exercise).
° % is the closed form for the recurrence.

e You NEED to get the closed forms, as simple as possiblel!!!

Lecture 6: Recurrences

Recurrence relations — merge sort analysis

e Merge sort recall:

— Divide the whole list into 2 sublists of equal size;
— Recursively merge sort the 2 sublists;

— Combine the 2 sorted sublists into a sorted list.

e Assumptions:

— n — number of keys in the whole list — a power of 2
— T(n) — WC running time

— QOperations under consideration: KC

e Deriving recurrence relation:
— Merge sort on 2 sublists 2 x T'(3)
— Assembling needs n — 1 KC (in the WC)
— T(n) = (n—1)+2x T(2)
— Base case: T(1) =0.

e Solving recurrence relation:

Lecture 6: Recurrences

Merge sort analysis — solving the recurrence relation

e Particular case:
T(1) =0,
T(2) =1,

e General case:

T(n) (n—1)+2xT(35)

(n—1)+2><(——1)+2><T()

T(2F)

(n—1)+2x T(2F1)

(n—1)+2x ((n—1)+2x T(2*2))
(n—1)4+2(n—-1) 4+ 22 x T(2F¥2)
(n—1)+2(n—-1)+22x ((n—1) +2x T(2"3))
(n—1)4+2(n—-1)+2%2(n—1) + 23 x T(2F3)

(n—1)+2(n—1)+22(n—1)+ 21 (n — 1) 4+ 2F x T(2FF)
(ZZ 02@) (n—1) 4+ 2F x T(1)

(2F—1)(n—-1)
(n—1)2

Wrong Il

Lecture 6: Recurrences

Merge sort analysis — solving the recurrence relation

e Particular case:
T(1) =0,
T(2) =1,

e General case:
T(n)

(n—1) +2 x T(%)
(n—1)+2x (-1 +2xT()

T(2F)

(2F — 1) + 2 x T(2F1)

(2= 1) +2x ((2"1 - 1) +2 x T(2872))

(28 —1) 4+ (28 —2) + 22 x T(22)

(28 —1) + (2" —2) + 22 x (22— 1) + 2 x T(283))

(28 —1) 4+ (28 —2) 4+ (2% — 22) 423 x T(2"3)

(28 —29) 4 (2F —21) + (2F — 22) 423 x T (2+3)

(28 —29) + (2F —21) 4 (2F — 22) 4 (2F — 23) 4 2% x T(2F*)

(2F —20) 4 (2F — 21) + (2F — 22) + ... + (2F — 2k~ 1) 4 2k x T(2FF)
(2F =29 + (2F —2) + (2" —22) + ... + (2F —2F1)

b 2F = 3o

(k—1)2F+1

Since n = 2%, we have k =Ign. So, T(n) =n(lgn — 1) + 1.

e Notes:
1. Variable substitution makes guessing easy ...
2. Later on recurrence solving always assume n being some
power, whenever necessary (ignore floor and ceiling).
3. Prove by induction.
4. Need to transform back to original variable.

Lecture 6: Recurrences

Closed form proof by induction:

e Recurrence:
0] ifn=1
T(”):{ (n—1)+2xT(Z) ifn>2
Guessed closed form:
T(n)=n(lgn—-1)+1,n>1

e Assuming n=2% k>0

e Base case:
According to guessed, T'(1) = 0.
Holds in base case.

e Inductive step:

Assuming that T(2F) = 2¥(k — 1) 4+ 1, k£ > 0, want to show
T(2F1) = 2kl 4 1.

By recurrence relation,

T(2F1) (2L —1) 4+ 2 x T(2F)
(kL —1) 42k (k — 1) + 2

E2k+1 4 1.

Donel!
e Conclusion: merge sort WC running time is ©(nlogn).

e \What is the worst case? or, what are those instances on which
mergesort performs exactly WC number of KC?

e Question: BC/AC running time, in terms of KC?

Lecture 6: Recurrences

Conclusions
e Divide-and-conquer algorithm often recursive

e Analysis of recursive algorithm —= solving recurrence

An exercise:

e Examine the running time of QZ(n) (uniform cost RAM)
Proc QZ(n)
if n > 1 then
a<—mnxn-+ 37

b+ axQz(2)
return QZ(%% X QZ(5) +n

else
return n X n

e A(n) — during QZ(n), number of additions

e M(n) — during QZ(n), number of multiplications
e T'(n)=A(n)+ M(n)

e Claim: QZ(n) running time € ©(T(n))

o A(n) =7 M(n) =7 T(n) =7

o (1 if n=1
e Hint: T'(n) —{ 3QZ(%)—|—5 if n>2

Solve T'(n) M

Lecture 6: Recurrences

Have you understood the lecture contents?

well

ok

not—-at-all

topic

O o o o o o

O o o o o o

O o o o o o

iterated substitution (IS) method
closed form guessing

proof by math induction
recurrence deriving

variable substitution

solving recurrence by IS

10

