Lecture 5: Growth of Functions

Agenda:
e Asymptotic notations O,£2,©,0,w

e Growth of functions

Reading:

e [extbook pages 41 — 61

Lecture 5: Growth of Functions

Motivations:

e Analysis of algorithms becomes analysis of functions:

- e.g.,
f(n) denotes the WC running time of insertion sort
g(n) denotes the WC running time of merge sort

— f(n) =can®+con+cs
g(n) = canlogn
— Which algorithm is preferred (runs faster)?

e To simplify algorithm analysis, want function notation which
indicates rate of growth (a.k.a., order of complexity)

O(f(n)) — read as “big O of f(n)"

roughly, The set of functions which, as n gets large, grow no faster
than a constant times f(n).

precisely, (or mathematically) The set of functions {h(n) : N — R} such
that for each h(n), there are constants ¢ € Rt and ng € N

such that h(n) < cof(n) for all n > ng.
examples: h(n) = 3n3 + 10n 4+ 1000logn € O(n3)
h(n) = 3n3 4+ 10n 4+ 1000logn € O(n*)

5", n < 10120
aw ={ % "5 o0 €0

Lecture 5: Growth of Functions

Definitions:

e O(f(n)) is the set of functions h(n) that
— roughly, grow no faster than f(n), namely

— dco, no, such that h(n) < cof(n) for all n > ng

e Q(f(n)) is the set of functions h(n) that

— roughly, grow at least as fast as f(n), namely

— dco, no, such that h(n) > cof(n) for all n > ng

e O(f(n)) is the set of functions h(n) that

— roughly, grow at the same rate as f(n), namely

— deo, c1,n0, such that cof(n) < h(n) <ci1f(n) for all n > ng
— ©(f(n)) = 0(f(n)) NQ2(f(n))

e o(f(n)) is the set of functions h(n) that
— roughly, grow slower than f(n), namely

— 1 h(n) __
My, — oo o) — 0]

e w(f(n)) is the set of functions h(n) that
— roughly, grow faster than f(n), namely

— i h(n) __
lTMy, oo Ty —

— h(n) € w(f(n)) if and only if f(n) € o(h(n))

Lecture 5: Growth of Functions

Warning:

e the textbook overloads “="
— Textbook uses g(n) = O(f(n))

— Incorrect '
Because O(f(n)) is a set of functions.

— Correct: g(n) € O(f(n))

— You should use the correct notations.

Examples: which of the following belongs to O(n3),
Q((n3), ©(n3), o(n3), w(n3) ?

1. fi(n) =19n
2. fo(n) =77n?
3. fz(n) =6n3+n?logn

4. fa(n) =11n*

Lecture 5: Growth of Functions

Answers:
1. fi(n) = 19n
2. fo(n) =77n?
3. fz3(n) =6n3+n?logn
4. fa(n) =11n*

f1, f2, f3 € O(n?)

fi(n) <19n3, foralln >0 — cg =19, no =0
fo(n) <77n3, foralln >0 —cg=77, no =0
fza(n) < 6m3+n2?.n, for all n > 1, since logn <n
if fa(n) < con?, then n < £ — no such ng exists

f37f4 c Q(n3)
fz(n) > 6n3, for all n > 1, since n?logn >0
fa(n) > 11n3, for alln >0

fz € ©(n3)
why?
f1, f2 € o(n3)
. 2)
f2(n): 119 PAIONS 7771? = limy—oo 7n_7 =20
. 34,2)
f3(n): liMy— oo w# = limy—oc 6 + _Iogn =06
f4(n): llmn—>oo %24 = ||n1n_>OO 11ln = o
fa € w(n3)

Lecture 5: Growth of Functions

logarithm review:
e Definition of log,n (b,n > 0): b°%" =n
e log,n as a function in n: increasing, one-to-one
e l0g,1 =0
e |log,xP =plog,x
o logy(xy) = logyx + log,y

) af;loQby — legbw

e log,x = (log,c)(log, x)

Some notes on logarithm:
e Inn =log.n (natural logarithm)
e lgn = log,n (base 2, binary)

o O(logyn) = @(log{whatever positive} n) = ©(logn)

e (logn)k € o(n®), for any positives k and e

Lecture 5: Growth of Functions
Handy ‘big O’ tips:
e h(n) € O(f(n)) if and only if f(n) € QL(h(n))

hn) _
f(n)

— ...00, then h € Q(f),w(f)
— ...0< k < oo, then h € ©(f)
— ...0, then h € O(f),o(f)

e limit rules: lim,_«

e L'Hospital's rules: if lim,—o h(n) = oo, lim,— f(n) = oo, and
h'(n), f'(n) exist, then

i b ()
AR on S LU

= 1iMy 0o = =0

Inn
n

e.g., lim,_.

e Cannot always use L'HoOspital’'s rules. e.g.,

1, if n even
— h(n) —{ n2. if n odd

— iMoo M) does NOT exist

n2

— Still, we have h(n) € O(n?), h(n) € Q(1), etc.

e 0(),€(),0(),0(),w(")

JUST useful asymptotic notations

Lecture 5: Growth of Functions

Have you understood the lecture contents?

well ok not-at-all topic

definitions: 0,€2,0,0,w
how to prove h(n) € O(f(n))

logarithm

O o O 0O
O o O 0O
O o O 0O

use of L'HOspital’s rules

Lecture 5: Growth of Functions

Question #4:
Five distinct elements are randomly chosen from integers between
1 and 20, and stored in a list L[1], ..., L[5]. Using linear search

we want to determine if an integer z (also chosen randomly from
integers between 1 and 20) belongs to the list L.

1. What is the number of key comparisons required on the av-
erage?

2. Give a similar analysis as in the first part if L has n elements
and all numbers are selected from integers between 1 and m.

Hints:

e The probability that you need exactly 1 comparison is %,

because x is randomly chosen and thus it hits the first number
with that probability.

e \What about 2 comparisons?

T
Still 55. Why?

e \What about 3 comparisons then?

e Sum them up:

1 1 1 1
— x 1 — X 2 — x34+—x4
20 +20 +20 +20 T

20— 4 90

X5=—=45
20 20

e [or the deneral question, do the same analysis and the answer
is 2mn—n<+n
2m

