Lecture 5: Growth of Functions

Agenda:

- Asymptotic notations $O, \Omega, \Theta, o, \omega$
- Growth of functions

Reading:

- Textbook pages 41 - 61

Lecture 5: Growth of Functions

Motivations:

- Analysis of algorithms becomes analysis of functions:
- e.g.,
$f(n)$ denotes the WC running time of insertion sort $g(n)$ denotes the WC running time of merge sort
$-f(n)=c_{1} n^{2}+c_{2} n+c_{3}$ $g(n)=c_{4} n \log n$
- Which algorithm is preferred (runs faster)?
- To simplify algorithm analysis, want function notation which indicates rate of growth (a.k.a., order of complexity)

$$
O(f(n)) \text { - read as "big } O \text { of } f(n) \text { " }
$$

roughly, The set of functions which, as n gets large, grow no faster than a constant times $f(n)$.
precisely, (or mathematically) The set of functions $\{h(n): N \rightarrow R\}$ such that for each $h(n)$, there are constants $c_{0} \in R^{+}$and $n_{0} \in N$ such that $h(n) \leq c_{0} f(n)$ for all $n>n_{0}$.
examples: $h(n)=3 n^{3}+10 n+1000 \log n \in O\left(n^{3}\right)$
$h(n)=3 n^{3}+10 n+1000 \log n \in O\left(n^{4}\right)$
$h(n)=\left\{\begin{array}{ll}5^{n}, & n \leq 10^{120} \\ n^{2}, & n>10^{120}\end{array} \in O\left(n^{2}\right)\right.$

Definitions:

- $O(f(n))$ is the set of functions $h(n)$ that
- roughly, grow no faster than $f(n)$, namely
- $\exists c_{0}, n_{0}$, such that $h(n) \leq c_{0} f(n)$ for all $n \geq n_{0}$
- $\Omega(f(n))$ is the set of functions $h(n)$ that
- roughly, grow at least as fast as $f(n)$, namely
- $\exists c_{0}, n_{0}$, such that $h(n) \geq c_{0} f(n)$ for all $n \geq n_{0}$
- $\Theta(f(n))$ is the set of functions $h(n)$ that
- roughly, grow at the same rate as $f(n)$, namely
- $\exists c_{0}, c_{1}, n_{0}$, such that $c_{0} f(n) \leq h(n) \leq c_{1} f(n)$ for all $n \geq n_{0}$
$-\Theta(f(n))=O(f(n)) \cap \Omega(f(n))$
- $o(f(n))$ is the set of functions $h(n)$ that
- roughly, grow slower than $f(n)$, namely
$-\lim _{n \rightarrow \infty} \frac{h(n)}{f(n)}=0$
- $\omega(f(n))$ is the set of functions $h(n)$ that
- roughly, grow faster than $f(n)$, namely
$-\lim _{n \rightarrow \infty} \frac{h(n)}{f(n)}=\infty$
- $h(n) \in \omega(f(n))$ if and only if $f(n) \in o(h(n))$

Warning:

- the textbook overloads " $=$ "
- Textbook uses $g(n)=O(f(n))$
- Incorrect !!! Because $O(f(n))$ is a set of functions.
- Correct: $g(n) \in O(f(n))$
- You should use the correct notations.

Examples: which of the following belongs to $O\left(n^{3}\right)$, $\Omega\left(n^{3}\right), \Theta\left(n^{3}\right), o\left(n^{3}\right), \omega\left(n^{3}\right)$?

1. $f_{1}(n)=19 n$
2. $f_{2}(n)=77 n^{2}$
3. $f_{3}(n)=6 n^{3}+n^{2} \log n$
4. $f_{4}(n)=11 n^{4}$

Lecture 5: Growth of Functions

Answers:

1. $f_{1}(n)=19 n$
2. $f_{2}(n)=77 n^{2}$
3. $f_{3}(n)=6 n^{3}+n^{2} \log n$
4. $f_{4}(n)=11 n^{4}$

- $f_{1}, f_{2}, f_{3} \in O\left(n^{3}\right)$
$f_{1}(n) \leq 19 n^{3}$, for all $n \geq 0-c_{0}=19, n_{0}=0$
$f_{2}(n) \leq 77 n^{3}$, for all $n \geq 0-c_{0}=77, n_{0}=0$
$f_{3}(n) \leq 6 n^{3}+n^{2} \cdot n$, for all $n \geq 1$, since $\log n \leq n$ if $f_{4}(n) \leq c_{0} n^{3}$, then $n \leq \frac{c_{0}}{11} —$ no such n_{0} exists
- $f_{3}, f_{4} \in \Omega\left(n^{3}\right)$
$f_{3}(n) \geq 6 n^{3}$, for all $n \geq 1$, since $n^{2} \log n \geq 0$
$f_{4}(n) \geq 11 n^{3}$, for all $n \geq 0$
- $f_{3} \in \Theta\left(n^{3}\right)$
why?
- $f_{1}, f_{2} \in o\left(n^{3}\right)$
$f_{1}(n): \lim _{n \rightarrow \infty} \frac{19 n}{n^{3}}=\lim _{n \rightarrow \infty} \frac{19}{n^{2}}=0$
$f_{2}(n): \lim _{n \rightarrow \infty} \frac{77 n^{2}}{n^{3}}=\lim _{n \rightarrow \infty} \frac{77}{n}=0$
$f_{3}(n): \lim _{n \rightarrow \infty} \frac{6 n^{3}+n^{2} \log n}{n^{3}}=\lim _{n \rightarrow \infty} 6+\frac{\log n}{n}=6$
$f_{4}(n): \lim _{n \rightarrow \infty} \frac{11 n^{4}}{n^{3}}=\lim _{n \rightarrow \infty} 11 n=\infty$
- $f_{4} \in \omega\left(n^{3}\right)$

logarithm review:

- Definition of $\log _{b} n(b, n>0): b^{\log _{b} n}=n$
- $\log _{b} n$ as a function in n : increasing, one-to-one
- $\log _{b} 1=0$
- $\log _{b} x^{p}=p \log _{b} x$
- $\log _{b}(x y)=\log _{b} x+\log _{b} y$
- $x^{\log _{b} y}=y^{\log _{b} x}$
- $\log _{b} x=\left(\log _{b} c\right)\left(\log _{c} x\right)$

Some notes on logarithm:

- $\operatorname{In} n=\log _{e} n$ (natural logarithm)
- $\lg n=\log _{2} n$ (base 2, binary)
- $\Theta\left(\log _{b} n\right)=\Theta\left(\log _{\{\text {whatever positive }\}} n\right)=\Theta(\log n)$
- $\frac{d}{d x} \ln x=\frac{1}{x}$
- $(\log n)^{k} \in o\left(n^{\epsilon}\right)$, for any positives k and ϵ

Handy 'big O ' tips:

- $h(n) \in O(f(n))$ if and only if $f(n) \in \Omega(h(n))$
- limit rules: $\lim _{n \rightarrow \infty} \frac{h(n)}{f(n)}=\ldots$

$$
\begin{aligned}
& -\ldots \infty, \text { then } h \in \Omega(f), \omega(f) \\
& -\ldots 0<k<\infty, \text { then } h \in \Theta(f) \\
& -\ldots 0, \text { then } h \in O(f), o(f)
\end{aligned}
$$

- L'Hôspital's rules: if $\lim _{n \rightarrow \infty} h(n)=\infty, \lim _{n \rightarrow \infty} f(n)=\infty$, and $h^{\prime}(n), f^{\prime}(n)$ exist, then

$$
\lim _{n \rightarrow \infty} \frac{h(n)}{f(n)}=\lim _{n \rightarrow \infty} \frac{h^{\prime}(n)}{f^{\prime}(n)}
$$

e.g., $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$

- Cannot always use L'Hôspital's rules. e.g.,
$-h(n)= \begin{cases}1, & \text { if } n \text { even } \\ n^{2}, & \text { if } n \text { odd }\end{cases}$
- $\lim _{n \rightarrow \infty} \frac{h(n)}{n^{2}}$ does NOT exist
- Still, we have $h(n) \in O\left(n^{2}\right), h(n) \in \Omega(1)$, etc.
- $O(\cdot), \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$

JUST useful asymptotic notations

Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	definitions: $O, \Omega, \Theta, o, \omega$
\square	\square	\square	how to prove $h(n) \in O(f(n))$
\square	\square	\square	logarithm
\square	\square	\square	use of L'Hôspital's rules

Question \#4:

Five distinct elements are randomly chosen from integers between 1 and 20, and stored in a list $L[1], \ldots, L[5]$. Using linear search we want to determine if an integer x (also chosen randomly from integers between 1 and 20) belongs to the list L.

1. What is the number of key comparisons required on the average?
2. Give a similar analysis as in the first part if L has n elements and all numbers are selected from integers between 1 and m.

Hints:

- The probability that you need exactly 1 comparison is $\frac{1}{20}$, because x is randomly chosen and thus it hits the first number with that probability.
- What about 2 comparisons?

Still $\frac{1}{20}$. Why?

- What about 3 comparisons then?
- Sum them up:

$$
\frac{1}{20} \times 1+\frac{1}{20} \times 2+\frac{1}{20} \times 3+\frac{1}{20} \times 4+\frac{20-4}{20} \times 5=\frac{90}{20}=4.5
$$

- For the general question, do the same analysis and the answer is $\frac{2 m n-n^{2}+n}{2 m}$.

