Agenda:

- Asymptotic notations $O, \Omega, \Theta, o, \omega$
- Growth of functions

Reading:

• Textbook pages 41 - 61

Motivations:

- Analysis of algorithms becomes analysis of functions:
 - e.g., f(n) denotes the WC running time of insertion sort g(n) denotes the WC running time of merge sort
 - $f(n) = c_1 n^2 + c_2 n + c_3$ $g(n) = c_4 n \log n$
 - Which algorithm is preferred (runs faster)?
- To simplify algorithm analysis, want function notation which indicates *rate of growth* (a.k.a., *order* of complexity)

$$O(f(n))$$
 — read as "big O of $f(n)$ "

- roughly, The set of functions which, as n gets large, grow no faster than a constant times f(n).
- precisely, (or mathematically) The set of functions $\{h(n) : N \to R\}$ such that for each h(n), there are constants $c_0 \in R^+$ and $n_0 \in N$ such that $h(n) \le c_0 f(n)$ for all $n > n_0$.

examples:
$$h(n) = 3n^3 + 10n + 1000 \log n \in O(n^3)$$

 $h(n) = 3n^3 + 10n + 1000 \log n \in O(n^4)$
 $h(n) = \begin{cases} 5^n, & n \le 10^{120} \\ n^2, & n > 10^{120} \end{cases} \in O(n^2)$

Definitions:

- O(f(n)) is the set of functions h(n) that
 - roughly, grow <u>no faster</u> than f(n), namely
 - $\exists c_0, n_0$, such that $h(n) \leq c_0 f(n)$ for all $n \geq n_0$
- $\Omega(f(n))$ is the set of functions h(n) that
 - roughly, grow at least as fast as f(n), namely
 - $\exists c_0, n_0$, such that $h(n) \ge c_0 f(n)$ for all $n \ge n_0$
- $\Theta(f(n))$ is the set of functions h(n) that
 - roughly, grow at the same rate as f(n), namely
 - $\exists c_0, c_1, n_0$, such that $c_0 f(n) \leq h(n) \leq c_1 f(n)$ for all $n \geq n_0$

 $- \Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$

- o(f(n)) is the set of functions h(n) that
 - roughly, grow slower than f(n), namely

$$-\lim_{n\to\infty}\frac{h(n)}{f(n)}=0$$

- $\omega(f(n))$ is the set of functions h(n) that
 - roughly, grow <u>faster</u> than f(n), namely

-
$$\lim_{n\to\infty} \frac{h(n)}{f(n)} = \infty$$

- $h(n) \in \omega(f(n))$ if and only if $f(n) \in o(h(n))$

Warning:

- the textbook overloads "="
 - Textbook uses g(n) = O(f(n))
 - Incorrect !!! Because O(f(n)) is a set of functions.
 - Correct: $g(n) \in O(f(n))$
 - You should use the correct notations.

Examples: which of the following belongs to $O(n^3)$, $\Omega(n^3)$, $\Theta(n^3)$, $o(n^3)$, $\omega(n^3)$?

1.
$$f_1(n) = 19n$$

2.
$$f_2(n) = 77n^2$$

3. $f_3(n) = 6n^3 + n^2 \log n$

4. $f_4(n) = 11n^4$

Answers:

- 1. $f_1(n) = 19n$ 2. $f_2(n) = 77n^2$
- 3. $f_3(n) = 6n^3 + n^2 \log n$
- 4. $f_4(n) = 11n^4$
- $f_1, f_2, f_3 \in O(n^3)$ $f_1(n) \le 19n^3$, for all $n \ge 0$ — $c_0 = 19$, $n_0 = 0$ $f_2(n) \le 77n^3$, for all $n \ge 0$ — $c_0 = 77$, $n_0 = 0$ $f_3(n) \le 6n^3 + n^2 \cdot n$, for all $n \ge 1$, since $\log n \le n$ if $f_4(n) \le c_0 n^3$, then $n \le \frac{c_0}{11}$ — no such n_0 exists
- $f_3, f_4 \in \Omega(n^3)$ $f_3(n) \ge 6n^3$, for all $n \ge 1$, since $n^2 \log n \ge 0$ $f_4(n) \ge 11n^3$, for all $n \ge 0$
- $f_3 \in \Theta(n^3)$ why?
- $f_1, f_2 \in o(n^3)$ $f_1(n): \lim_{n \to \infty} \frac{19n}{n^3} = \lim_{n \to \infty} \frac{19}{n^2} = 0$ $f_2(n): \lim_{n \to \infty} \frac{77n^2}{n^3} = \lim_{n \to \infty} \frac{77}{n} = 0$ $f_3(n): \lim_{n \to \infty} \frac{6n^3 + n^2 \log n}{n^3} = \lim_{n \to \infty} 6 + \frac{\log n}{n} = 6$ $f_4(n): \lim_{n \to \infty} \frac{11n^4}{n^3} = \lim_{n \to \infty} 11n = \infty$
- $f_4 \in \omega(n^3)$

logarithm review:

- Definition of $\log_b n$ (b, n > 0): $b^{\log_b n} = n$
- $\log_b n$ as a function in n: increasing, one-to-one
- $\log_b 1 = 0$
- $\log_b x^p = p \log_b x$
- $\log_b(xy) = \log_b x + \log_b y$
- $x^{\log_b y} = y^{\log_b x}$
- $\log_b x = (\log_b c)(\log_c x)$

Some notes on logarithm:

- $\ln n = \log_e n$ (natural logarithm)
- $\lg n = \log_2 n$ (base 2, binary)
- $\Theta(\log_b n) = \Theta(\log_{\{\text{whatever positive}\}} n) = \Theta(\log n)$
- $\frac{d}{dx} \ln x = \frac{1}{x}$
- $(\log n)^k \in o(n^{\epsilon})$, for any positives k and ϵ

Handy 'big O' tips:

• $h(n) \in O(f(n))$ if and only if $f(n) \in \Omega(h(n))$

• limit rules:
$$\lim_{n\to\infty} \frac{h(n)}{f(n)} = \dots$$

- $\dots \infty$, then $h \in \Omega(f), \omega(f)$
- $\dots 0 < k < \infty$, then $h \in \Theta(f)$
- $\dots 0$, then $h \in O(f), o(f)$

• L'Hôspital's rules: if $\lim_{n\to\infty} h(n) = \infty$, $\lim_{n\to\infty} f(n) = \infty$, and h'(n), f'(n) exist, then

$$\lim_{n \to \infty} \frac{h(n)}{f(n)} = \lim_{n \to \infty} \frac{h'(n)}{f'(n)}$$

e.g., $\lim_{n\to\infty} \frac{\ln n}{n} = \lim_{n\to\infty} \frac{1}{n} = 0$

• Cannot always use L'Hôspital's rules. e.g.,

$$- h(n) = \begin{cases} 1, & \text{if } n \text{ even} \\ n^2, & \text{if } n \text{ odd} \end{cases}$$
$$- \lim_{n \to \infty} \frac{h(n)}{n^2} \text{ does NOT exist}$$
$$- \text{ Still, we have } h(n) \in O(n^2), h(n) \in \Omega(1), \text{ etc.}$$

•
$$O(\cdot), \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$$

JUST useful asymptotic notations

Have you understood the lecture contents?

well	ok	not-at-all	topic
			definitions: $O, \Omega, \Theta, o, \omega$
			how to prove $h(n) \in O(f(n))$
			logarithm
			use of L'Hôspital's rules

Question #4:

Five distinct elements are randomly chosen from integers between 1 and 20, and stored in a list $L[1], \ldots, L[5]$. Using linear search we want to determine if an integer x (also chosen randomly from integers between 1 and 20) belongs to the list L.

- 1. What is the number of *key* comparisons required on the average?
- 2. Give a similar analysis as in the first part if L has n elements and all numbers are selected from integers between 1 and m.

Hints:

- The probability that you need exactly 1 comparison is $\frac{1}{20}$, because x is randomly chosen and thus it hits the first number with that probability.
- What about 2 comparisons?
 Still ¹/₂₀. Why?
- What about 3 comparisons then?
- Sum them up:

$$\frac{1}{20} \times 1 + \frac{1}{20} \times 2 + \frac{1}{20} \times 3 + \frac{1}{20} \times 4 + \frac{20 - 4}{20} \times 5 = \frac{90}{20} = 4.5$$

• For the general question, do the same analysis and the answer is $\frac{2mn-n^2+n}{2m}$.

9