
Lecture 3: Insertion Sort

Agenda:

• Worst/average/best case run time

• Correctness

– Loop invariants

– Insertion sort correctness

Reading:

• Textbook pages 15 – 27

Insertion sort pseudocode (recall)

InsertionSort(A) **sort A[1..n] in place

for j ← 2 to n do
key ← A[j] **insert A[j] into sorted sublist A[1..j − 1]
i← j − 1
while (i > 0 and A[i] > key) do

A[i + 1]← A[i]
i← i− 1

A[i + 1]← key

1

Lecture 3: Insertion Sort

Analysis of insertion sort
InsertionSort(A) cost times

for j ← 2 to n do c1 n
key ← A[j] c2 n− 1
i← j − 1 c3 n− 1

while (i > 0 and A[i] > key) do c4

n∑
j=2

tj

A[i + 1]← A[i] c5

n∑
j=2

(tj − 1)

i← i− 1 c6

n∑
j=2

(tj − 1)

A[i + 1]← key c7 n− 1

tj — number of times the while loop test is executed for j.

T (n) = c1n + (c2 + c3 − c5 − c6 + c7)(n− 1) + (c4 + c5 + c6)

n∑
j=2

tj

Running time — order of growth in input size

• Consider leading term only

– lower order terms become insignificant for large n

• Further ignore the constant coefficient

– constant factor is less significant than the rate

• Insertion sort:

– best case — Θ(n)

– worst case — Θ(n2)

2

Lecture 3: Insertion Sort

Quick analysis of insertion sort

• Assumptions:

– (Uniform cost) RAM

– Key comparison (KC) happens: i > 0 and A[i] > key

(minors: loop counter increment operation, copy)

– RAM running time proportional to the number of KC

• Best case (BC)

– What is the best case?

already sorted

– One KC for each j, and so
∑n

j=2
1 = n− 1

• Worst case (WC)

– What is the worst case?

reverse sorted

– j KC for fixed j, and so
∑n

j=2
j = n(n+1)

2
− 1

• Average case (AC)

3

Lecture 3: Insertion Sort

Quick analysis of insertion sort (AC)

• Average case: always ask “average over what input distribu-
tion?”

• Unless stated otherwise, assume each possible input equiprob-
able

Uniform distribution

• Here, each of the possible inputs equiprobable (why?)

• Key observation: equiprobable inputs imply for each key, rank
among keys so far is equiprobable

• e.g., when j = 4, expected number of KC is 1+2+3+4
4

= 2.5

• Conclusion: expected # KC to insert key j is

j∑
i=1

i

j
= j+1

2

• Conclusion: total expected number of KC is

n∑
j=2

j + 1

2
=

1

2

n+1∑
j=3

=
1

2

(
(n + 1)(n + 2)

2
− 3

)
=

n2 + 3n− 4

4

• Θ(n2)

4

Lecture 3: Insertion Sort

Correctness of insertion sort

Claim:

• At the start of each iteration of the for loop, the subarray
A[1..j−1] consists of the elements originally in A[1..j−1] and
in sorted order.

Proof of claim.

• initialization: j = 2

• maintenance: j → j + 1

• termination: j = n + 1

Loop invariant vs. Mathematical induction

• Common points

– initialization vs. base step

– maintenance vs. inductive step

• Difference

– termination vs. infinite

5

Lecture 3: Insertion Sort

Correctness & Loop invariant

• Why correctness?

– Always a good idea to verify correctness

– Becoming more common in industry

– This course: a simple introduction to correctness proofs

– When loop is involved, use loop invariant (and induction)

– When recursion is involved, use induction

• Loop invariant (LI)

– Initialization: does LI hold 1st time through?

– Maintenance: if LI holds one time, does LI hold the
next?

– Termination #1: upon completion, LI implies
correctness?

– Termination #2: does loop terminate?

• Insert sort LI:

At start of for loop, keys initially in A[1..j−1] are in A[1..j−1]
and sorted.

– Initialization: A[1..1] is trivially sorted

– Maintenance: none from A[1..j] moves beyond j; sorted

– Termination #1: upon completion, j = n + 1 and by LI
A[1..n] is sorted

– Termination #2: for loop counter j increases by 1 at a
time, and no change inside the loop

6

Lecture 3: Insertion Sort

Sketch of more formal proof of Maintenance

• Assume LI holds when j = k and so A[1] ≤ A[2] ≤ . . . ≤ A[k−1]

• The for loop body contains another while loop. Use another
LI.

• LI2: let A∗[1..n] denote the list at start of while loop. Then
each time execution reaches start of while loop:

– A[1..i + 1] = A∗[1..i + 1]

– A[i + 2..j] = A∗[i + 1..j − 1]

• Prove LI2 (exercise)

• Using LI2, prove LI

Hint: when LI2 terminates, either i = 0 or A[i] ≤ key (the
latter implies either i = j − 1 or A[i + 1] > key).

7

Lecture 3: Insertion Sort

Have you understood the lecture contents?

well ok not-at-all topic

� � � why 3 types of analysis

� � � AC analysis requirements

� � � WC/BC/AC for insertion sort

� � � loop invariant

� � � diff between LI & math induction

� � � correctness of insertion sort by LI

8

