Lecture 3: Insertion Sort

Agenda:

- Worst/average/best case run time
- Correctness
 - Loop invariants
 - Insertion sort correctness

Reading:

• Textbook pages 15 – 27

Insertion sort pseudocode (recall)

InsertionSort(A) **sort A[1..n] in place

for
$$j \leftarrow 2$$
 to n do
 $key \leftarrow A[j]$ **insert $A[j]$ into sorted sublist $A[1..j-1]$
 $i \leftarrow j-1$
while $(i > 0$ and $A[i] > key$) do
 $A[i+1] \leftarrow A[i]$
 $i \leftarrow i-1$
 $A[i+1] \leftarrow key$

1

Analysis of insertion sort					
InsertionSort(A)	cost	times			
for $j \leftarrow 2$ to n do	c_1	n			
$key \leftarrow A[j]$	c_2	n-1			
$i \leftarrow j-1$	сз	n - 1			
while ($i > 0$ and $A[i] > key$) do	<i>C</i> 4	$\sum_{j=2}^{n} t_j$			
$A[i+1] \leftarrow A[i]$	С5	$\sum_{j=2}^{n} (t_j - 1)$			
$i \leftarrow i-1$	<i>c</i> ₆	$\sum_{i=2}^{n}(t_j-1)$			
$A[i+1] \leftarrow key$	<i>C</i> 7	n = 1			

 t_j — number of times the while loop test is executed for j.

$$T(n) = c_1 n + (c_2 + c_3 - c_5 - c_6 + c_7)(n - 1) + (c_4 + c_5 + c_6) \sum_{j=2}^n t_j$$

Running time — order of growth in input size

- Consider leading term only
 - lower order terms become insignificant for large n
- Further ignore the constant coefficient
 - constant factor is less significant than the rate
- Insertion sort:
 - best case $\Theta(n)$
 - worst case $\Theta(n^2)$

Quick analysis of insertion sort

- Assumptions:
 - (Uniform cost) RAM
 - Key comparison (KC) happens: i > 0 and A[i] > key (minors: loop counter increment operation, copy)
 - RAM running time proportional to the number of KC
- Best case (BC)
 - What is the best case? already sorted
 - One KC for each j, and so $\sum_{j=2}^{n} 1 = n 1$
- Worst case (WC)
 - What is the worst case? reverse sorted
 - j KC for fixed j, and so $\sum_{j=2}^{n} j = \frac{n(n+1)}{2} 1$
- Average case (AC)

Quick analysis of insertion sort (AC)

- Average case: always ask "average over what input distribution?"
- Unless stated otherwise, assume each possible input equiprobable
 Uniform distribution
- Here, each of the ____ possible inputs equiprobable (why?)
- Key observation: equiprobable inputs imply for each key, rank among keys so far is equiprobable
- e.g., when j = 4, expected number of KC is $\frac{1+2+3+4}{4} = 2.5$
- Conclusion: expected # KC to insert key j is $\frac{\sum\limits_{i=1}^{j}i}{j}=\frac{j+1}{2}$
- Conclusion: total expected number of KC is

$$\sum_{j=2}^{n} \frac{j+1}{2} = \frac{1}{2} \sum_{j=3}^{n+1} = \frac{1}{2} \left(\frac{(n+1)(n+2)}{2} - 3 \right) = \frac{n^2 + 3n - 4}{4}$$

• $\Theta(n^2)$

Correctness of insertion sort

Claim:

• At the start of each iteration of the for loop, the subarray A[1..j-1] consists of the elements originally in A[1..j-1] and in sorted order.

Proof of claim.

- initialization: j = 2
- maintenance: $j \rightarrow j + 1$
- termination: j = n + 1

Loop invariant vs. Mathematical induction

- Common points
 - initialization vs. base step
 - maintenance vs. inductive step
- Difference
 - termination vs. infinite

Correctness & Loop invariant

- Why correctness?
 - Always a good idea to verify correctness
 - Becoming more common in industry
 - This course: a simple introduction to correctness proofs
 - When loop is involved, use loop invariant (and induction)
 - When recursion is involved, use induction
- Loop invariant (LI)
 - Initialization: does LI hold 1^{st} time through?
 - Maintenance: if LI holds one time, does LI hold the next?
 - Termination #1: upon completion, LI implies correctness?
 - Termination #2: does loop terminate?
- Insert sort LI:

At start of for loop, keys initially in A[1..j-1] are in A[1..j-1] and sorted.

- Initialization: A[1..1] is trivially sorted
- Maintenance: none from A[1..j] moves beyond j; sorted
- Termination #1: upon completion, j = n + 1 and by LI A[1..n] is sorted
- Termination #2: for loop counter j increases by 1 at a time, and no change inside the loop

Sketch of more formal proof of Maintenance

- Assume LI holds when j = k and so $A[1] \le A[2] \le \ldots \le A[k-1]$
- The for loop body contains another while loop. Use another LI.
- LI2: let $A^*[1..n]$ denote the list at start of while loop. Then each time execution reaches start of while loop:

$$- A[1..i+1] = A^*[1..i+1]$$

- $A[i+2..j] = A^*[i+1..j-1]$
- Prove LI2 (exercise)
- Using LI2, prove LI

Hint: when LI2 terminates, either i = 0 or $A[i] \le key$ (the latter implies either i = j - 1 or A[i + 1] > key).

Have you understood the lecture contents?

well	ok	not-at-all	topic
			why 3 types of analysis
			AC analysis requirements
			WC/BC/AC for insertion sort
			loop invariant
			diff between LI & math induction
			correctness of insertion sort by LI