Lecture 2: Getting Started

Agenda:

- Getting started
 - Sorting & insertion sort
- Analysis
 - Analysis using RAM
 - What Θ means informally
 - Asymptotic running time
 - Worst/average/best case
 - Insertion sort analysis

Reading:

• Textbook pages 5 – 27

Lecture 2: Getting Started

Getting started

• Algorithm:

A well-defined computational procedure (namely, a sequence of elementary computational steps) which takes an input value and produces an output value, according to a special mathematical function.

- Describing algorithms: pseudocode
- Pseudocode example

```
input: integers a, b
output: a \times b
sum \leftarrow 0
for j \leftarrow 1 to b do
sum \leftarrow sum + a
return sum
```

- Pseudocode conventions
 - indention indicates block structure
 - while/for/repeat/if/then/else
 - loop counters retain values !!!
 - ** or ▷ comment
 - variables are local (unless stated otherwise)
 - parameters passed by value
 - comparison: boolean "short circuit" evaluation $e.g. \ j > 0$ AND A[j] < key

Sorting

- Input: a sequence of n numbers (a_1, a_2, \ldots, a_n)
- Output: a permutation $(a'_1, a'_2, \ldots, a'_n)$ such that $a'_1 \leq a'_2 \leq \ldots \leq a'_n$
- Insertion sort one sorting algorithm (more coming soon)
 - Idea: repeatedly insert A[j] into sorted sublist A[1..j-1]- How to insert?
 - * search for insert location in sequence, A[j-1], A[j-2], ...
 - * move contents to the right during the search
- Pseudocode

InsertionSort(A) **sort A[1..n] in place

```
for j \leftarrow 2 to n do
```

 $key \leftarrow A[j]$ **insert A[j] into sorted sublist A[1..j-1] $i \leftarrow j-1$ while (i > 0 and A[i] > key) do $A[i+1] \leftarrow A[i]$ $i \leftarrow i-1$

- $A[i+1] \leftarrow key$
- Insertion sort trace: (53,21,47,62,14,38)

53	21	47	62	14	38	$ ** j \leftarrow 2$
21	53	47	62	14	38	** end of this iteration
21	53	47	62	14	38	** <i>j</i> ← 3
21	47	53	62	14	38	
21	47	53	62	14	38	
21	47	53	62	14	38	
14	21	38	47	53	62	** output permutation

Analysis of insertion sort

- Running time
 - How to measure it? implement and run?
 - Problem: run time may vary (language, machine, code, environment)
 - Problem: not always feasible
 - Idea/Solution:
 - * select theoretical computer model
 - estimate running time on model by the number of cycles

Model of computation: RAM

- RAM: random access machine (Page 21-22)
- Components
 - IT: input tape (read-only)
 - OT: output tape (write-only)
 - CU: computation unit (inc. program)
 - M: memory locations (each can store an integer)
 M[0], M[1], M[2], ...
 - Program: fixed user-defined instruction sequence
- Properties
 - CU: instructions (each usually via register/accumulator):
 - move data between memory
 - compare data and branch
 - binary arithmetic operation
 - read from IT to memory
 - write from memory to OT
- Example RAM instructions for $z \leftarrow x + y$:

 $\begin{array}{l} \mathsf{M}[0] := \mathsf{M}[@x] ** \text{wherever } x \text{ is} \\ \mathsf{M}[1] := \mathsf{M}[@y] ** \text{wherever } y \text{ is} \\ \text{add} & ** \mathsf{M}[0] := \mathsf{M}[0] + \mathsf{M}[1] \\ \mathsf{M}[@z] := \mathsf{M}[0] ** \text{wherever } z \text{ is gets sum} \end{array}$

Analysis of RAM programs

- Time instructions executed
- Space memory locations used
- Example running time to multiply $a \times b$
- Answer *depends* on sizes of *a* and *b*
 - if $a, b, a \times b$ each fits into one RAM memory word, then constant number of RAM instructions, so constant time
 - if not
 - \ast need multiple words to represent a, b, $a \times b$
 - * can show number of RAM instructions proportional to (words to represent a) × (words to represent b)
 - * with k bits per word, number a needs using $\frac{\lg a}{k}$ words
 - * time proportional to $\lg a \times \lg b$ (since k constant)
 - * write $\Theta(\lg a \times \lg b)$ time
- Types of RAM models
 - log cost RAM
 - * assume numbers may not fit into one memory word
 - * $a \times b$ takes $\Theta(\lg a \times \lg b)$ time and $\Theta(\lg a + \lg b)$ space
 - uniform cost RAM
 - * assume each number fits into one memory word
 - * $a \times b$ takes $\Theta(1)$ time and space
 - Unless otherwise stated, assume uniform cost RAM

Analysis of insertion sort

- Running time
 - Model of computation: RAM
 - Problem: run time varies with input
 - Idea/Solution:
 - * estimate worst/average/best case performance
 - * make estimate a *function* of input *size*
 - * sorting: input size usually takes as the number of keys
 - * guarantee of performance

Kinds of analysis

- Worst case
 T(n) maximum time over all inputs of size n
- Average case
 - Must specify input distribution over which average computed
 - Most common: assume uniform (a.k.a. equiprobable) input distribution (all inputs of size *n* equally likely)
 - Useful but usually difficult
- Best case
 - Useful for lower bound
 - Not otherwise useful: any algorithm can be modified to have fast best case (by adding: if input is particular case then return particular answer)

Analysis of insertion sort

 t_j — number of times the while loop test is executed for j.

$$T(n) = c_1 n + (c_2 + c_3 - c_5 - c_6 + c_7)(n - 1) + (c_4 + c_5 + c_6) \sum_{j=2}^{n} t_j$$

Running time

• Best case: list is already sorted $(t_j = 1)$

$$T(n) = a \times n + b$$

• Worst case: list is reverse sorted $(t_j = j)$

$$T(n) = a \times n^2 + b \times n + c$$

Why worst case analysis?

- upper bound guarantee
- occurs fairly often
- average case roughly as bad as worst case

Lecture 2: Getting Started

Have you understood the lecture contents?

well	ok	not-at-all	topic
			diff between problem & instance
			insertion sort algorithm
			pseudocode convention
			alg analysis in general
			RAM (uniform cost, log cost)
			insertion sort analysis