
Lecture 2: Getting Started

Agenda:

• Getting started

– Sorting & insertion sort

• Analysis

– Analysis using RAM

– What Θ means informally

– Asymptotic running time

– Worst/average/best case

– Insertion sort analysis

Reading:

• Textbook pages 5 – 27

1

Lecture 2: Getting Started

Getting started

• Algorithm:

A well-defined computational procedure (namely, a sequence

of elementary computational steps) which takes an input va-
lue and produces an output value, according to a special ma-
thematical function.

• Describing algorithms: pseudocode

• Pseudocode example

input: integers a, b
output: a× b

sum← 0
for j ← 1 to b do

sum← sum + a
return sum

• Pseudocode conventions

– indention indicates block structure

– while/for/repeat/if/then/else

– loop counters retain values !!!

– ** or . comment

– variables are local (unless stated otherwise)

– parameters passed by value

– comparison: boolean “short circuit” evaluation

e.g. j > 0 AND A[j] < key

2

Lecture 2: Getting Started

Sorting

• Input: a sequence of n numbers (a1, a2, . . . , an)

• Output: a permutation (a′1, a
′
2, . . . , a

′
n) such that

a′1 ≤ a′2 ≤ . . . ≤ a′n

• Insertion sort — one sorting algorithm (more coming soon)
– Idea: repeatedly insert A[j] into sorted sublist A[1..j − 1]
– How to insert?
∗ search for insert location in sequence, A[j−1], A[j−2],

. . .
∗ move contents to the right during the search

• Pseudocode

InsertionSort(A) **sort A[1..n] in place

for j ← 2 to n do
key ← A[j] **insert A[j] into sorted sublist A[1..j − 1]
i← j − 1
while (i > 0 and A[i] > key) do

A[i + 1]← A[i]
i← i− 1

A[i + 1]← key

• Insertion sort trace: (53,21,47,62,14,38)
53 21 47 62 14 38 ** j ← 2
21 53 47 62 14 38 ** end of this iteration
21 53 47 62 14 38 ** j ← 3
21 47 53 62 14 38
21 47 53 62 14 38
21 47 53 62 14 38
14 21 38 47 53 62 ** output permutation

3

Lecture 2: Getting Started

Analysis of insertion sort

• Running time
– How to measure it? implement and run?
– Problem: run time may vary (language, machine, code,

environment)
– Problem: not always feasible
– Idea/Solution:
∗ select theoretical computer model
∗ estimate running time on model by the number of cy-

cles

Model of computation: RAM

• RAM: random access machine (Page 21-22)

• Components
– IT: input tape (read-only)
– OT: output tape (write-only)
– CU: computation unit (inc. program)
– M: memory locations (each can store an integer)

M[0], M[1], M[2], . . .
– Program: fixed user-defined instruction sequence

• Properties
CU: instructions (each usually via register/accumulator):
– move data between memory
– compare data and branch
– binary arithmetic operation
– read from IT to memory
– write from memory to OT

• Example RAM instructions for z ← x + y:

M[0] := M[@x] **wherever x is
M[1] := M[@y] **wherever y is
add **M[0] := M[0] + M[1]
M[@z] := M[0] **wherever z is gets sum

4

Lecture 2: Getting Started

Analysis of RAM programs

• Time — instructions executed

• Space — memory locations used

• Example — running time to multiply a× b

• Answer depends on sizes of a and b

– if a, b, a × b each fits into one RAM memory word, then
constant number of RAM instructions, so constant time

– if not

∗ need multiple words to represent a, b, a× b

∗ can show number of RAM instructions proportional to
(words to represent a) × (words to represent b)

∗ with k bits per word, number a needs using lg a
k

words

∗ time proportional to lg a× lg b (since k constant)

∗ write Θ(lg a× lg b) time

• Types of RAM models

– log cost RAM

∗ assume numbers may not fit into one memory word

∗ a× b takes Θ(lg a× lg b) time and Θ(lg a + lg b) space

– uniform cost RAM

∗ assume each number fits into one memory word

∗ a× b takes Θ(1) time and space

– Unless otherwise stated, assume uniform cost RAM

5

Lecture 2: Getting Started

Analysis of insertion sort

• Running time
– Model of computation: RAM
– Problem: run time varies with input
– Idea/Solution:
∗ estimate worst/average/best case performance
∗ make estimate a function of input size
∗ sorting: input size usually takes as the number of keys
∗ guarantee of performance

Kinds of analysis

• Worst case
– T (n) — maximum time over all inputs of size n

• Average case
– Must specify input distribution over which average com-

puted
– Most common: assume uniform (a.k.a. equiprobable)

input distribution (all inputs of size n equally likely)
– Useful but usually difficult

• Best case
– Useful for lower bound
– Not otherwise useful: any algorithm can be modified to

have fast best case (by adding: if input is particular
case then return particular answer)

6

Lecture 2: Getting Started

Analysis of insertion sort

InsertionSort(A) cost times

for j ← 2 to n do c1 n
key ← A[j] c2 n− 1
i← j − 1 c3 n− 1
while (i > 0 and A[i] > key) do c4

∑n

j=2
tj

A[i + 1]← A[i] c5

∑n

j=2
(tj − 1)

i← i− 1 c6

∑n

j=2
(tj − 1)

A[i + 1]← key c7 n− 1

tj — number of times the while loop test is executed for j.

T (n) = c1n + (c2 + c3 − c5 − c6 + c7)(n− 1) + (c4 + c5 + c6)

n∑
j=2

tj

Running time

• Best case: list is already sorted (tj = 1)

T (n) = a× n + b

• Worst case: list is reverse sorted (tj = j)

T (n) = a× n2 + b× n + c

Why worst case analysis?
– upper bound — guarantee
– occurs fairly often
– average case roughly as bad as worst case

7

Lecture 2: Getting Started

Have you understood the lecture contents?

well ok not-at-all topic

� � � diff between problem & instance

� � � insertion sort algorithm

� � � pseudocode convention

� � � alg analysis in general

� � � RAM (uniform cost, log cost)

� � � insertion sort analysis

8

