Agenda:

- Welcome to CMPUT 204 Algorithms I
- Official course information
- Course overview
- Announcements
- Basic concepts & Math induction review

Reading:

• Textbook pages 5 - 14

Official course information

- Course webpage: http://www.cs.ualberta.ca/~bowling/classes/cmput204
- Mark distribution:
 - 5 assignments 35% (6% + 8% + 8% + 8% + 5%)
 - 3 midterms at 10% each (in class, 50 minutes)
 - Final 35% (3 hours)
- Lectures follow textbook: Introduction to Algorithms, by Cormen/Leiserson/Rivest/Stein (2nd Edition, 2001)
- Michael Bowling (Section A1)
 - ATH339, 492-1766, bowling@cs.ualberta.ca
 - Office hours: TBA
- Mohammad Salavatipour (Section A2)
 - ATH303, 492-1759, mreza@cs.ualberta.ca
 - Office hours: Monday & Friday 2:00-3:00

Course overview

- 204 Algorithm I, Topics covered:
 - Introduction to algorithms
 - Algorithms: sorting, matrices, graphs, sets
 - Design: divide-and-conquer, dynamic programming, greedy
 - Analysis: model assumptions, worst/average/best case, asymptotic, reduction, complexity classes P and NP, hard problems
 - Calendar and outline with reading list on course webpage

• 304 Algorithms II

- More advanced algorithms, and their design and analysis
- 474 Formal Languages, Automata and Computability
 - More formal approach to models, complexity, and computability
- Other related courses
 - * 419 Algorithmic Graph Theory (occasionally)
 - * 497 **Combinatorial Algorithms** (occasionally)
 - * 366 Intelligent Systems
 - * 466 Machine Learning

Announcements

- No seminars first week
- Assignment #1 available (from course webpage)
- Attend your registered section and seminar
- Some of the materials covered in seminars

Role of algorithms in computing

- Algorithm
- Typical problems
 - Optimizations (minimizing cost, maximizing profit, etc.)
 - Internet (routing, search, mining, etc.)
 - E-commerce
 - Operations research (resource management, scheduling, etc.)
- Easy and hard problems
- Issues while designing Algorithms : time/space management

Basic concepts

- Problem
- Instance
- Algorithm
- Issues for a given algorithm
 - Correctness often via Loop Invariants, proved by induction
 - Analysis measuring resource requirement
 - * Running time
 - * Space
 - Optimality
- Algorithm design concepts
 - Divide and conquer
 - Data structure
 - Dynamic programming
 - Exhaustive enumeration
 - Greedy
 - Reduction (useful for showing problems are hard)
 - Branch and bound
 - Others (probably won't cover)

Mathematical Induction:

- Steps in a proof by mathematical induction:
 - 1. Define the statement to be proved precisely
 - 2. Statement holds for the base case figure out what is the base case
 - 3. Assuming the statement holds for some intermediate case, prove that it holds for the *next* case

- often, the assumption should be used in the proof

- Examples:
 - 1. Prove by induction that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$. Proof. Base case n = 1: LHS is 1; RHS is 1 too. So the equality holds.

Assuming the equality holds for n = k $(k \ge 1)$. That is, $\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$. For n = k + 1, LHS is

$$\sum_{i=1}^{k+1} i^2 = \sum_{\substack{k=1 \ i=1 \ 0}}^k i^2 + (k+1)^2$$

=
$$\frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

=
$$\frac{(k+1)(2k^2+k+6(k+1))}{6}$$

=
$$\frac{(k+1)(k+2)(2k+3)}{6}.$$

RHS is $\frac{(k+1)(k+2)(2k+3)}{6}$.

So the equality holds when n = k + 1. Therefore, the equality holds for all $n \ge 1$.

2. Prove by induction that $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$.

Have you understood the lecture contents?

well	ok	not-at-all	topic
			coverage, marking scheme !!!
			basic concepts in algorithmics
			proof by math induction