9.1 Sparse Recovery

Given a stream σ it defines a frequency vector f where f_{i} (for each $i \in[n]$) is the frequency of item i. In the past lecture we saw the use of count sketch algorithm applied for sparse recovery. As a recap, we called a vector s-sparse if there are at most s non-zero entries in it. Here our goal is to design an algorithm that can detect if a vector is 1 -sparse (or s-sparse in general) and if so find the corresponding indices. We start with 1 -sparse detection and recovery and show how we can use it to design an s-sparse and recovery algorithm.

9.1.1 1-Sparse Recovery

Given a vector $a \in \mathbb{R}^{n}$, we want to detect if there is a single non-zero a_{i} (and if so, find it), or detect that such index doesn't exist. Consider the streaming model and suppose we are interested in the frequency vector f :

$$
\begin{aligned}
& \ell \leftarrow 0 \\
& s \leftarrow 0 \\
& \text { While there is token }(j, c) \text { do } \\
& \quad \ell \leftarrow \ell+c \\
& \quad s \leftarrow s+c j \\
& \text { return } \frac{s}{\ell} \text { and } f_{\frac{s}{\ell}}=\ell
\end{aligned}
$$

Note that after the algorithm finishes we have:

$$
\ell=\sum_{i: f_{i} \neq 0} f_{i} \quad s=\sum_{i \epsilon[n]} i f_{i}
$$

So, if there is a single non-zero f_{j} then $\ell=f_{j}$ and $s=j f_{j}$, and we have $j=\frac{s}{\ell}$. But this algorithm cannot detec if there is a single j.

9.1.2 1-Sparse Detect and Recovery

$$
\begin{aligned}
& \text { Let } q \text { be a prime } n^{2} \leq q \leq 2 n^{2} \\
& \ell \leftarrow 0 \\
& s \leftarrow 0 \\
& p \leftarrow 0 \\
& \text { Let } \mathrm{r} \text { be random from }\{1 \ldots q-1\} \\
& \text { While there is a token }(j, c) \text { do } \\
& \quad \ell \leftarrow \ell+c \\
& \quad s \leftarrow s+c j \\
& \quad p \leftarrow p+c r^{j} \\
& \text { if } \frac{s}{\ell} \notin \mathbb{Z} \text { then say fail } \\
& \text { if } p \neq \ell r^{\frac{s}{\ell}} \text { then say fail } \\
& \text { else return } \frac{s}{\ell} \text { and } f_{\frac{s}{\ell}}^{\ell}=\ell
\end{aligned}
$$

Let R be the random value for r :

$$
\begin{gathered}
\ell=\sum_{j \epsilon[n]} f_{j}=\sum_{j: f_{j} \neq 0} f_{j} \\
s=\sum_{j \in[n]} j f_{j}=\sum_{j: f_{j} \neq 0} j f_{j} \\
p=\sum_{j \epsilon[n]} R^{j} f_{j}=\sum_{j: f_{j} \neq 0} R^{j} f_{j}
\end{gathered}
$$

If there is a single index i such that $f_{i} \neq 0$ then $\ell=f_{i}, s=i f_{i}$ and $p=R^{\frac{s}{\ell}} f_{i}$, and we find the correct answer. Now, let's suppose that is not 1 -sparse and $\frac{S}{\ell} \in \mathbb{Z}^{+}$:

$$
P(x)=\left(\sum_{j: f_{j} \neq 0} f_{j} x^{j}\right)-\ell x^{\frac{s}{\ell}}
$$

So, $P(x)$ is a degree $\leq n$ polynomial and the number of roots of $P(x)$ is $\leq n$. We have a false positive if $P(R)=0$

$$
\operatorname{Pr}[\text { false positive }]=\operatorname{Pr}[P(R)=0] \leq \frac{n}{q} \leq \frac{1}{n}
$$

Total space of: $O(\log n+\log M)$ for ℓ, s and p.

9.1.3 S-Sparse Recovery

We use 1-sparse detection and recovery as a blackbox to build s-sparse recovery.

- Let $D[1 . . t, 1 \ldots 2 s]$ maintain $2 t s$ independent 1 -sparse recoveries.
- Let $h_{1} \ldots h_{t}[n] \rightarrow[2 s]$ be independent 2 -universal hash functions.
- For each token (j, c) : For $1 \leq i \leq t$ we update 1 -sparse recovery for $D\left[i, h_{i}(j)\right]$.
- Agregate non-zero coordinates and return them all.

Suppose f is s-sparse, let $S=\left\{j \mid f_{j} \neq 0\right\}$ for any index $j \in S$. The probability that j lands in a bucket (among $1 \ldots 2 s)$ by itself is $\geq \frac{1}{2}$:

$$
\operatorname{Pr}[\text { row } 1 \text { fails to recover } i \in S] \leq \sum_{\substack{j: f_{j} \neq 0 \\ j \neq i}} \operatorname{Pr}[h(i)=h(j)] \leq \sum \frac{1}{2 s} \leq \frac{s-1}{2 s} \leq \frac{1}{2}
$$

Therefore:
$\operatorname{Pr}[$ all rows $1 \ldots t$ fail to recover $i] \leq \frac{1}{2^{t}} \leq \frac{\delta}{s}$

So that:

$$
\operatorname{Pr}[\text { some } i \in S \text { is not recovered }] \leq \delta
$$

9.2 Sampling with a Reservoir

Suppose we want to have a uniform sample of size k from a stream. Based on the algorithm proposed by Pavlos S. Efraimidis and Paul G. Spirakis [ES06] from 2006.

- Given a set of size N, pick a small size k sample.
- Stream model.

Easy case: $k-1$
$s \leftarrow \emptyset$
$i \leftarrow 0$
While there are more elements do
$i \leftarrow i+1$, say x_{i} is the current element
$s \leftarrow x_{i}$ with probability $\frac{1}{i}$
return s

It is an easy exercise to verify that at any time, s is a sample of the stream seen so far. For $k>1$ with replacement, we can run k parallel copies of sampler for $k=1$.

More cases and applications will be presented in the next lecture.

References

CCFC04 M. Charikar, K.C. Chen, and M. Farach-Colton, Finding frequent items in data streams. Theoretical Computer Science, 312:03-15, 2004.

ES06 Pavlos S. Efraimidis, Paul G. Spirakis, Weighted random sampling with a reservoir. Journal Information Processing Letters, 97(5):181-185, 2006.

