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9.1 Sparse Recovery

Given a stream σ it defines a frequency vector f where fi (for each i ∈ [n]) is the frequency of item i. In the
past lecture we saw the use of count sketch algorithm applied for sparse recovery. As a recap, we called a vector
s-sparse if there are at most s non-zero entries in it. Here our goal is to design an algorithm that can detect
if a vector is 1-sparse (or s-sparse in general) and if so find the corresponding indices. We start with 1-sparse
detection and recovery and show how we can use it to design an s-sparse and recovery algorithm.

9.1.1 1-Sparse Recovery

Given a vector aεRn, we want to detect if there is a single non-zero ai (and if so, find it), or detect that such
index doesn’t exist. Consider the streaming model and suppose we are interested in the frequency vector f :

`← 0
s← 0
While there is token (j, c) do
`← `+ c
s← s+ cj

return s
` and f s

`
= `

Note that after the algorithm finishes we have:

` =
∑
i:fi 6=0

fi s =
∑
iε[n]

ifi

So, if there is a single non-zero fj then ` = fj and s = jfj , and we have j = s
` . But this algorithm cannot detec

if there is a single j.
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9.1.2 1-Sparse Detect and Recovery

Let q be a prime n2 ≤ q ≤ 2n2

`← 0
s← 0
p← 0

Let r be random from {1...q − 1}

While there is a token (j, c) do
`← `+ c
s← s+ cj
p← p+ crj

if s
` /∈ Z then say fail

if p 6= `r
s
` then say fail

else return s
` and f s

`
= `

Let R be the random value for r:

` =
∑
jε[n]

fj =
∑

fj
j:fj 6=0

s =
∑
jε[n]

jfj =
∑
j:fj 6=0

jfj

p =
∑
jε[n]

Rjfj =
∑
j:fj 6=0

Rjfj

If there is a single index i such that fi 6= 0 then ` = fi, s = ifi and p = R
s
` fi, and we find the correct answer.

Now, let’s suppose that is not 1-sparse and S
` ∈ Z+:

P (x) = (
∑
j:fj 6=0

fjx
j)− `x s

`

So, P (x) is a degree ≤ n polynomial and the number of roots of P (x) is ≤ n. We have a false positive if
P (R) = 0

Pr[false positive] = Pr[P (R) = 0] ≤ n

q
≤ 1

n

Total space of: O(log n+ logM) for `, s and p.

9.1.3 S-Sparse Recovery

We use 1-sparse detection and recovery as a blackbox to build s-sparse recovery.
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• Let D[1..t, 1...2s] maintain 2ts independent 1-sparse recoveries.

• Let h1...ht[n]→ [2s] be independent 2-universal hash functions.

• For each token (j, c): For 1 ≤ i ≤ t we update 1-sparse recovery for D[i, hi(j)].

• Agregate non-zero coordinates and return them all.

Suppose f is s-sparse, let S = {j|fj 6= 0} for any index j ∈ S. The probability that j lands in a bucket (among
1...2s) by itself is ≥ 1

2 :

Pr[row 1 fails to recover i ∈ S] ≤
∑

j:fj 6=0
j 6=i

Pr[h(i) = h(j)] ≤
∑

1
2s ≤

s−1
2s ≤

1
2

Therefore:

Pr[all rows 1...t fail to recover i] ≤ 1
2t ≤

δ
s

So that:

Pr[some i ∈ S is not recovered] ≤ δ

9.2 Sampling with a Reservoir

Suppose we want to have a uniform sample of size k from a stream. Based on the algorithm proposed by Pavlos
S. Efraimidis and Paul G. Spirakis [ES06] from 2006.

• Given a set of size N , pick a small size k sample.

• Stream model.

Easy case: k − 1

s← ∅
i← 0
While there are more elements do

i← i+ 1, say xi is the current element
s← xi with probability 1

i
return s

It is an easy exercise to verify that at any time, s is a sample of the stream seen so far. For k > 1 with
replacement, we can run k parallel copies of sampler for k = 1.

More cases and applications will be presented in the next lecture.
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