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8.1 Applications of Count and Count-Min Sketch Algorithms

In the last lecture we discussed some possible applications for the count and count-min sketch algorithms. In this
lecture we more formally define the problems and describe how we might approach implementing the solutions.
All problems will be queries that can be asked at any point during the algorithm. For the purpose of this lecture
we will consider the examples for the count sketch algorithm.

8.1.1 Point Query

We begin with the easiest application. Point Query asks for a frequency at any point during the algorithm.
This is trivial as during the algorithm we are maintaining our estimates.

Problem 1 (Point Query) Answer query Q(i): return an estimate of fi.

This problem is easy to answer because at any point we have a current running estimate of fi. Whenever you
receive query Q(i) return f̂i as the median of all the running estimates.

8.1.2 Heavy Hitters

This next query is interested in knowing which are the most frequent items you have seen so far. We say an
element is frequent if it supersedes a threshold percentage of the total count.

Problem 2 (Heavy Hitters) Fix α ∈ (0, 1) before running the count sketch algorithm. Answer query Q:
return the α-heavy hitters. Specifically output all a ∈ [n] such that fa ≥ α‖f‖1.

For simplicity we can assume we are working with a cash register model, meaning we only add elements and
never remove them. To do this, maintain a heap. Every time we update f̂a we check if f̂a ≥ α‖f‖1. If it is, add

it to the heap, or update it if it is already in the heap. If f̂a < α‖f‖1 and it is currently in the heap, remove it.
Make sure the heap has at most 1

α elements in it at any given time, removing smallest counts when necessary.
The space complexity for the heap is O( 1

α (log n+ logm)) and the update time is O(log 1
α ).

8.1.3 Range Queries

We now consider a more interesting query. The Range Query is interested in knowing the sum of a contiguous
range of frequencies. A naive approach to solving this problem for any given range would be to use the answer
to the Point Query for each index in the range. We will show a faster solution after stating the exact problem.
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Problem 3 (Range Queries) Answer query Q(l, r): return an estimate of
∑r
i=l fi.

For simplicity assume that n is a power of two (if it is not, round n up to the nearest power of two). For an
interval [i, j] if there exists a k ≥ 0, such that 2k|(i − 1) and j − i + 1 = 2k then it is called a dyadic interval.
Some examples of dyadic intervals: [3, 3] has length 20 = 1, [5, 6] has length 21 = 2 and [1, 8] has length 23 = 8.

Create a node for every dyadic interval that has a right endpoint less than n = 2r:

• Length 20: [1, 1], [2, 2], . . . , [n, n]

• Length 21: [1, 2], [3, 4], . . . , [n− 1, n]

...

• Length 2i: [1, 2i], [2i + 1, 2i+2], . . . , n− 2i + 1, n]

...

• Length 2r: [1, n]

For nodes of length 2i,i > 0, make it the parent node of the two nodes with intervals of length 2i−1 whose union
is this nodes interval. For each node of each dyadic interval [i, j], we will store

∑j
k=i f̂k. This binary tree has

exactly 2n − 1 nodes. We can clearly see that the nodes of length 1 would store exactly the estimates f̂k as
before. Whenever the frequency of f̂k gets updated we must also update every node which contains k in their
interval, of which there are O(log n) such nodes.

Now, to determine Q(l, r), we want to find some non-overlapping subset of dyadic intervals S such that [l, r] =
∪P∈SP . Finding such a set we can use the nodes to get the desired sum. We use the following lemma to show
that such a subset exists, its size, and subsequently how to obtain such a set.

Lemma 1 Every range [l, r] can be partitioned into a subset S of dyadic intervals where |S| ≤ 2 log n.

Proof. Consider the following recursive algorithm which uses I(N) to represent the interval of node N and
l(N), r(N) to represent the left and right child respectively.

RangeQuery( node N , interval P )

1. S ← ∅

2. If I(N) = P then:

• S ← {P}

3. Else if P is a non-empty interval:

• S ← RangeQuery( l(N), P ∩ I(l(N)) ) ∪ RangeQuery( r(N), P ∩ I(r(N)) )

4. Return S

Running this algorithm starting with N being the node that has interval [1, n] and P = [l, r] will give the set
S. It can be seen that at any level of the binary tree there are at most 2 intervals added to S. Thus since the
tree has height log n we get at most 2 log n intervals added to S before returning.
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For actual applications we cannot store O(n). As we kept a count sketch for the lists of length 1 we will now
keep a count sketch for each list of dyadic intervals with the same length. This approach will take O(log n log 1

δ )
for updates.

8.1.4 Sparse Recovery

For a vector x ∈ Rn suppose we are looking for a sparse vector z ∈ Rn that is an approximation of x. A vector
is sparse if it has few non-zero entries. Specifically, a vector z is α-sparse if ‖z‖0 ≤ α; the number of non-zero
elements is less than α. Let

errαp (x) = min
z:‖z‖0≤α

‖x− z‖p

and consider S to be the set of α indices with largest values in x. Then we get errαp (x) = (
∑
i 6∈S |xi|p)

1
p .

Lemma 2 With high probability, ∀i ∈ [n], |f̂i − fi| ≤ ε√
α
errα2 (f) if we choose k = 3α

ε and t = O(log n) for the

count sketch algorithm.

Proof. Let S be the α indices with largest frequencies in f and let f ′ be obtained from f by zeroing all indices
in S. Then errα2 (f) = ‖f ′‖2.

Fix an index i. For any `, let z` = g`(i)C[`, h(i)] from the count sketch algorithm. Define the event A` to be
the event ∃i′ ∈ S\{i} such that h`(i) = h`(i

′). So A` is 1 if the coordinate i has a collision with an index of S
under h` and 0 otherwise.

Pr[A`] = Pr[A` = 1]

≤
∑

i′∈S\{i}

Pr[h`(i) = h`(i
′)]

≤ |S|
k

=
α

( 3α
ε )

=
ε

3

Then we get:

Pr[|z` − fi| ≥
ε√
α
errα2 (f)] = Pr[|z` − fi| ≥

ε√
α
‖f ′‖2]

= Pr[A`] Pr[|z` − fi| ≥
ε√
α
‖f ′‖2|A`] + Pr[Ā`] Pr[|z` − fi| ≥

ε√
α
‖f ′‖2|Ā`]

≤ Pr[A`] + Pr[|z` − fi| ≥
ε√
α
‖f ′‖2|Ā`]

≤ ε

3
+

1

3

≤ 1

2
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The second equality is gotten by splitting it up into the event A` happens and the event A` does not happen.
The fourth equality is from the previous equation alongside Theorem 1 from Lecture 7. We over estimate but
we can see that this estimation is good enough since this probability only considers a single hash function. If
we consider the medians over all the hash functions, we must have more than half of the hash functions fail.
Since they are independent, each with probability ≤ 1

2 , this would have a probability ≤ 2−
t
2 which is enough

to finish the lemma given our choice of t.

Suppose that f̂ is our estimate of f from the count sketch algorithm. We will prove in the following lemma that
ẑ, being the largest α elements of f̂ , is a good estimate of an α-sparse vector for f .

Lemma 3 Suppose x, y ∈ Rn where ‖x− y‖∞ ≤ ε√
α
errα2 (x). Then if z is obtained from y by taking the largest

α coordinates (zeroing all the others), then ‖x− z‖2 ≤ (1 + 5ε)errα2 (x).

Proof. For the proof, denote errα2 (x) = E.

Let S, T be the set of indices of the largest α coordinates in x and y respectively. Then zi = yi if i ∈ T and
zi = 0 otherwise.

‖x− z‖22 =
∑
i∈T
|xi − zi|2 +

∑
i∈S\T

|xi − zi|2 +
∑

i∈[n]\(S∪T )

|xi − zi|2

=
∑
i∈T
|xi − yi|2 +

∑
i∈S\T

|xi|2 +
∑

i∈[n]\(S∪T )

|xi|2

Since ‖x− y‖∞ ≤ ε√
α
E we get

∑
i∈T
|xi − yi|2 ≤

∑
i∈T

(
ε√
α
E)2

= |T |ε
2

α
E2

= α
ε2

α
E2

= ε2E2

Also we have ∀i, |xi| − |yi| ≤ |xi − yi| ≤ ε√
α
E and |yi| − |xi| ≤ |xi − yi| ≤ ε√

α
E. Rearranging the two equations

and we get |xi| ≤ |yi|+ ε√
α
E and −|xi| ≤ −|yi|+ ε√

α
E. Thus for any i, j we get |xi| − |xj | ≤ |yi| − |yj |+ 2ε√

α
E.

Specifically if we consider a = maxi∈S\T xi and b = mini∈T\S xi we get a− b ≤ 2ε√
α
E. Also, b ≤ ‖xT\S‖2√

(|T\S|)
since

b is the minimum of the set. Using these facts we get the following:
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∑
i∈S\T

|xi|2 ≤
∑
i∈S\T

a2

= a2|S\T |

≤ (b+
2ε√
α
E)2|S\T |

≤ (
‖xT\S‖2√
|T\S|

+
2ε√
α
E)2|S\T |

= (
‖xT\S‖22
|S\T |

+
4ε√
α

‖xT\S‖2√
|S\T |

+
4ε2

α
E2)|S\T |

≤ ‖xT\S‖22 + 4εE + 4ε2E2

≤ ‖xT\S‖22 + 8εE2

Now we have from the two above equations:

‖x− z‖22 =
∑
i∈T
|xi − yi|2 +

∑
i∈S\T

|xi|2 +
∑

i∈[n]\(S∪T )

|xi|2

≤ ε2E2 + ‖xT\S‖22 + 8εE2 + ‖x[n]\(S∪T )‖22
= 9εE2 + ‖x[n]\S‖22
= 9εE2 + E2

≤ (1 + 10ε)E2

Finally we get ‖x− z‖2 ≤
√

(1 + 10ε)E2 ≤ (1 + 5ε)E as desired.

In the next lecture we will continue sparse recovery and its use in applications.
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