CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 6 (Sep 23, 2019): F, Estimator and Heavy Hitters

Lecturer: Mohammad R. Salavatipour Scribe: Haozhou Pang

Recall that in the previous lecture, we have seen an F5 estimator via the JL lemma that uses the 2-stable
property of the normal distribution. In this lecture, we will extend this idea to construct an F), estimator by
using a p-stable distribution (for p € (0,2]).

6.1 [, estimator
Before we introduce the Fj, estimator, we need some definitions.

Definition 1 Let p > 0 be a real number. A probability distribution D, over reals is called p-stable if it has the
following property: Suppose X1,...,X,, € D,, for any real vector c € R", X = 3" ¢; X; has the same distribution
as eX, where ¢ = (3. )P = ||c||, and X € D,.

It is known that p-stable distribution exists for all p € (0, 2], for example, the normal distribution is 2-stable
and Cauchy distribution is 1-stable. Cauchy distributio2n is the distribution of the ratio of two standard normal
distribution. It has density function ¢(z) = ﬁe"” /2. However, in general, for any p > 2, the p-stable

distributions do not have an explicit formula. Also, we can use the Chambers-Mallows-Stuck method to sample
1

from D, for p € (0,2]. Sample (0, r) from [-F, 5] x [0,1] and return X = (Csér;g;@p (Coifl((117f))9))T. Now if we

replace N(0,1) in the code given for F, estimator with D,, where it’s a p-stable distribution we can generate a
variable X that is distributed according to D,, scalled by ||f||, and this is what we are trying to estimate.

Definition 2 The median of distribution D is p if for X ~ D, Pr(X < u] = . If ¢(x) is the probability

density function (PDF) of D, then [* _¢(z)dz = 3.

Note that the distribution D, has a unique median and we denote it by median(D,). For a distribution D, we
let |D| denote the distribution of the absolute value of a random variable drawn from D. One can think of | D]
as the negative part of D being folded to the positive part, so if ¢(x) is the density function of D, then the
density function of |D| is given by (), where ¢ (z) = 2¢(x) if z > 0 and () = 0 if £ < 0. The factor 2 arises
from the symmetry of the distribution. Then we are ready to state the F}, estimator.

F, Estimator
t+ O(%logt)
z+ 0
Let M be a t x n matrix where M;; ~ D,
While there is a token (j,a;), do
for i =0 to ¢ do:
z[i] < x[i] + Miq,
median(|z1],...,|x¢])

return median(Dp)
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6.1.1 Analysis of the [}, estimator

For any p € (0,2] and ¢ € R, we use ¢, . to denote the density function of distribution of ¢|X| where X ~ D,
and let 4, be the median of this distribution. Then it’s easy to verify that ¢, . = (%) and iy = c- pp1.

Suppose X; is the value of z; at the end of the algorithm. By using the p-stable property we know that

X; . . . . f
Xi ~ || fl[pX, where X ~ Dp, 80 ——tlmsrs di‘an(“ BT has a distribution according to ¢|D,| where ¢ = — s dl.LJ'("’DPD and

the PDF is ¢, .. Then the median of the distribution (which we try to estimate) is pp. = ¢ pup1 = ||fllp-
The algorithm takes ¢t independent samples from the distribution and output the sample median. We use the
following lemma to show the sample median gives us good concentration.

Lemma 1 Let € > 0 and D be a probability distribution over R with density function ¢ and a unique median
> 0. Suppose ¢ is absolutely continuous on [(1—e€)u, (14+€)u] and let ¢* = min{p(z) : z € [(1—e)p, (1+€)p]}.
Let Y = mediani<;<¢(Y;) where Y;’s are independently sampled from D. Then

*2t

Pr{|Y — p| > ep) < 2e= 3%

—3e “24)*2’5 The other direction is
p) = . Let ®(y fy dz be the

Proof. We only give the proof to the upper bound Pr[Y < (1 — €)y]
similar and omitted here. Note that by the definition of median, Pr[Y;
cumulative density function, then

<e
<

PrYi< == - ) Hla)ds
=~ @)~ 2((1 - )
=2 () for some ¢ € [(1 - €}y,
-
< % o by the definition of ¢*

Let I; be the indicator variable for the event Y; < (1 — €)u. Then

Bl =Pr[Y; < (1 - e)u] < 5 — epd*

Let I = Z;.:l I;, then E[I] = t- (1 —~). Since Y is the median of Y3,...,Y;, Y < (1 —€)p requires at least £ of
I;’s being true, which is equivalent to Pr[I > (1+ «)E[I]]. If we choose (14 «a) = ﬁ and apply the Chernoff

bounds, then we have

P’I“[Y < (1 _ G)M] < 6_%62”2¢(C)2t <e 262#2¢*2t

as required. m

It remains to apply the lemma to show the concentration of our F), estimator. Let ¢ be the density function
of the distribution of ¢|D,|, and recall that the median of this distribution ¢ = ||f||,. The algorithm returns
median of the ¢ independent samples from ¢|D,|. Therefore by applying the lemma,
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*2t

_2.2,2
PrlY —||£llp| > el fllp] < 2e75¢#°¢

Observe that p¢* only depends on D, and ¢, let p¢* = ¢, (some constant depending on p and e), given
t =0(%log §), thus

PrilY —|[fllo] = ellfllp] <6

Remarks: As readers might have noticed, there are several issues that make the F), estimator as described
impractical:

e The algorithm requires space to store the entire matrix M, which is too large for a streaming model.
e The value of ¢ depends on ¢, , which is not explicitly known due to the lack of knowledge on D), for p > 2.
e The algorithm involves calculations on reals, which is expensive and would introduce rounding errors.

To obtain an efficient streaming algorithm, we need to use pseudorandom generators to store a compressed
version of M, for more details, see [106].

6.2 Heavy Hitters

We have seen several algorithms for estimating F, for p > 0. Recall that Fy corresponds to the number of
distinct items in the stream and we define Fi, to be finding the largest frequency in a stream. An interesting
question that one may ask is that what if we want to find the frequent items (a.k.a heavy hitters) in a stream?

The problem can be described as given a stream o = ay, ag, . . ., a,, with frequency vector (f1, fa, ..., fm), given
k, we want to find all values {j|f; > 7'}. Note that the number of such items is at most k, and the Majority
problem, in which we want to know is there an item that appears more than % times in the stream, is a special
case when k = 2. Misra and Gries [MG82] gave a simple algorithm to solve this problem:

Misra-Gries (82°)

let A be an empty list
while stream is not empty do

let j be the next token
if (j € keys(A)) then

Alj] + Alj)+1

else if |keys(A)| < k —1 then
Al <1

else for each [ € keys(A) do
Alll + All] -1

remove keys with A[l] =0
end while

for each i € keys(A), set f; = Ali]
for each i ¢ keys(A), set f; =0
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We maintain A as a balanced BST. We have at most k key/value pairs and each pair needs O(logn) bits, so
the total space is O(k(logm + logn)).

The following theorem is left as an exercise.

>

Theorem 1 For each i € [n]: f; —

=3

< fi < fi.

The theorem implies that every item that occurs more than 7' times in the stream is guaranteed to appear in

the output list, so we can do a second pass to find exact f; values for the at most k£ keys in A. The drawback
of this algorithm is also obvious, it requires 2 passes on the data instead of 1, and it does not provide a sketch.
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