3.1 Bar-yossef, Jayram, Kumar, Sivakumar, Trevisan Algorithm

For a better estimator of $F_{0}(\sigma)$ (determining the number of unique elements in our stream σ) we look to an algorithm from [BJKST02] that improves upon the Flajolet-Martin Counter.

For the Flajolet-Martin Counter, we only kept the smallest element produced by our 2-universal hash family $H:[m] \rightarrow[0,1]$ and expected that after d distinct elements were processed we would have gaps of equal spacing roughly equal to $\frac{1}{d+1}$. Using the smallest element we approximated d.

Instead of keeping track of the smallest element, we keep track of the t smallest hash values seen so far (this can be done using a heap). Using a similar analysis as above; for a 2 -universal hash family $H:[m] \rightarrow[0,1]$ we expect that the number of hashed values that are less than $\frac{t}{d}$ should be t. Thus we expect largest of these t elements to be $\frac{t}{d}$. To achieve a $(1+\epsilon)$-approximation we must choose t large enough. Specifically we will consider $t=\frac{c}{\epsilon^{2}}$ for some constant c.

BJKST Algorithm

1. Choose a 2-universal hash family $H:[m] \rightarrow\left[M=m^{3}\right]$
2. $t \leftarrow \frac{c}{\epsilon^{2}}$
3. While there is another a_{i} from σ do:

- Update the smallest t hash values with $h\left(a_{i}\right)$

4. Let v be the largest of the t smallest hash values
5. Return $\tilde{d}=\frac{t M}{v}$ (Since we expect $v \approx \frac{t M}{d}$)

Since the hash function from our 2-universal hash family is mapping m things to m^{3} spots we expect that the probability that there are any collisions is at most $\frac{m^{2}}{m^{3}}=\frac{1}{m}$. Since m is large, we will assume that there are no collisions.

3.1.1 Analysis

This algorithm uses $O\left(\frac{1}{\epsilon^{2}} \log m\right)$ space (for storing the t smallest elements and $\log m$ bits) which can even be improved to roughly $O\left(\frac{1}{\epsilon^{2}}+\log m\right)$ (see [BJKST02]). We will now prove with the following two lemmas that this is a $(1+\epsilon, 1-\delta)$-estimator. For the following proofs, assume our distinct values are b_{1}, \ldots, b_{d}.

Lemma $1 \operatorname{Pr}[\tilde{d}>(1+\epsilon) d] \leq \frac{16}{c}$.

Proof. Suppose $\frac{t M}{v}=\tilde{d}>(1+\epsilon) d$. So $v<\frac{t M}{(1+\epsilon) d}$ which implies from the definition of v that at least t of the hash values $h\left(b_{1}\right), \ldots, h\left(b_{d}\right)$ are less than $\frac{t M}{(1+\epsilon) d} \leq \frac{\left(1-\frac{\epsilon}{2}\right) t M}{d}$ (for small values of ϵ). For each $h\left(b_{i}\right)$, the probability of being smaller than $\frac{\left(1-\frac{\epsilon}{2}\right) t M}{d}$ is at most $\frac{\left(1-\frac{\epsilon}{2}\right) t}{d}+\frac{1}{M}<\frac{\left(1-\frac{\epsilon}{d}\right) t}{d}$, where the $\frac{1}{M}$ comes from scaling.

Let X_{i} be the 0-1 random variable for $h\left(b_{i}\right)<\frac{\left(1-\frac{\epsilon}{2}\right) t M}{d}$ and let $Y=\sum_{i=1}^{m} X_{i}$. From above, $\mathrm{E}\left[X_{i}\right] \leq \frac{\left(1-\frac{\epsilon}{4}\right) t}{d}$. Thus from Lemma 1 from Lecture 2 we have that:
$\operatorname{Var}[Y] \leq \mathrm{E}[Y]=\sum_{i=1}^{m} \mathrm{E}\left[X_{i}\right] \leq \sum_{i=1}^{d} \frac{\left(1-\frac{\epsilon}{4}\right) t}{d}=\left(1-\frac{\epsilon}{4}\right) t$
So by relating the probability of our estimate to the variable Y and using Chebyshev we get the following:

$$
\begin{aligned}
\operatorname{Pr}[\tilde{d}>(1+\epsilon) d] & \leq \operatorname{Pr}[Y>t] \\
& \leq \operatorname{Pr}\left[|Y-\mathrm{E}[Y]|>\frac{\epsilon t}{4}\right] \\
& \leq \frac{16 \operatorname{Var}[Y]}{e^{2} t^{2}} \\
& \leq \frac{16\left(1-\frac{\epsilon}{4}\right) t}{e^{2} t^{2}} \\
& =\frac{16-4 \epsilon}{c} \\
& \leq \frac{16}{c}
\end{aligned}
$$

Lemma $2 \operatorname{Pr}[\tilde{d}<(1-\epsilon) d] \leq \frac{1}{c}$.

Proof. We note that for a constant $\alpha>1, \frac{1}{1-\epsilon} \leq(1+\alpha \epsilon)$ for a small enough ϵ.
Suppose now that $\tilde{d}=\frac{t M}{v}<(1-\epsilon) d$. Which implies $v<\frac{t M}{(1-\epsilon) d}$. Again this means that less than t of the hash values $h\left(b_{1}\right), \ldots, h\left(b_{d}\right)$ are smaller than $\frac{t M}{(1-\epsilon) d} \leq \frac{\left(1+\frac{3}{2} \epsilon\right) t M}{d}$. For each $h\left(b_{i}\right)$, the probability of being smaller than $\frac{\left(1+\frac{3}{2} \epsilon\right) t M}{d}$ is at most $\frac{\left(1+\frac{3}{2} \epsilon\right) t}{d}+\frac{1}{M}<\frac{(1+2 \epsilon) t}{d}$.
Let X_{i} be the 0-1 random variable for $h\left(b_{i}\right)<\frac{(1+2 \epsilon) t M}{d}$ and let $Y=\sum_{i=1}^{m} X_{i}$. From above, $\mathrm{E}\left[X_{i}\right] \leq \frac{(1+2 \epsilon) t}{d}$. Thus from Lemma 1 from Lecture 2 we have that:
$\operatorname{Var}[Y] \leq \mathrm{E}[Y]=\sum_{i=1}^{m} \mathrm{E}\left[X_{i}\right] \leq \sum_{i=1}^{d} \frac{(1+2 \epsilon) t}{d}=(1+2 \epsilon) t$.
Similar to the previous lemma we get the following:

$$
\begin{aligned}
\operatorname{Pr}[\tilde{d}<(1-\epsilon) d] & \leq \operatorname{Pr}[Y<t] \\
& \leq \operatorname{Pr}[|Y-\mathrm{E}[Y]|>2 \epsilon] \\
& \leq \frac{\operatorname{Var}[Y]}{4 e^{2} t^{2}} \\
& \leq \frac{(1+2 \epsilon) t}{4 e^{2} t^{2}} \\
& =\frac{1+2 \epsilon}{4 c} \\
& \leq \frac{1}{c}
\end{aligned}
$$

As an example, if we choose $c=96$ we get a $\left(1+\epsilon, 1-\frac{1}{3}\right)$-estimator.

3.2 AMS $F_{k}(\sigma)$ Estimator

So far we have only looked at $F_{0}(\sigma)$ and $F_{1}(\sigma)$ estimators. The first general $F_{k}(\sigma)$ estimator we will consider is the following algorithm which was presented in [AMS99] alongside their $F_{0}(\sigma)$ estimator.

AMS $F_{k}(\sigma)$ Algorithm

1. $m \leftarrow 0, r \leftarrow 0, a \leftarrow 0$
2. While there is another item do:

- $m \leftarrow m+1$
- $\beta \leftarrow$ random boolean with $\operatorname{Pr}[\beta=1]=\frac{1}{m}$
- If $\beta=1 ; a \leftarrow a_{m}, r \leftarrow 1$
- Else if $a_{m}=a ; r \leftarrow r+1$

3. Return $m\left(r^{k}-(r-1)^{k}\right)$

The probability of the j-th item being selected as the last token is exactly equal to $\frac{1}{j} \times \frac{j}{j+1} \times \ldots \times \frac{m-1}{m}=\frac{1}{m}$. Thus this algorithm will randomly select one of the m items. After the stream has been processed (with, say the J-th item being randomly selected), then $r=\left|\left\{j: a_{j}=a_{J}, J \leq j \leq m\right\}\right|$ (the number of items in the suffix of the stream past the J-th element that are the same as $\left.a_{J}\right)$.

It may not be immediately clear why we choose the specific return value. To understand this choice we will consider the analysis of this algorithm.

3.2.1 Analysis

Clearly we have that $\operatorname{Pr}[J=j]=\frac{f_{J}}{m}$. To understand the analysis of this algorithm, we will instead use the following equivalent process of selecting a :

1. Pick a random $a \in[d]$.
2. Uniformly at random select one of the occurrences of a from σ.

Let X be the random variable for the output of the algorithm and A and R the random variables for a and r respectively.
$\mathrm{E}[X]=\sum_{j \in[d]} \operatorname{Pr}[A=j] \mathrm{E}[X \mid A=j]=\sum_{j \in[d]} \frac{f_{j}}{m} \mathrm{E}\left[m\left(R^{k}-(R-1)^{k}\right) \mid A=j\right]$
Once we are given that $A=j$, we have that R is equally likely to be any of the values $\left\{1, \ldots, f_{j}\right\}$. If $R=i \in$ $\left\{1, \ldots, f_{j}\right\}$ then $\operatorname{Pr}[R=i \mid A=j]=\frac{1}{f_{j}}$ and $X=m\left(i^{k}-(i-1)^{k}\right)$. Using this we get:

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{j \in[d]} \frac{f_{j}}{m} \mathrm{E}\left[m\left(R^{k}-(R-1)^{k}\right) \mid A=j\right] \\
& =\sum_{j \in[d]} \frac{f_{j}}{m} \sum_{i=1}^{f_{j}} \frac{1}{f_{j}} m\left(i^{k}-(i-1)^{k}\right) \\
& =\sum_{j \in[d]} \sum_{i=1}^{f_{j}} i^{k}-(i-1)^{k}
\end{aligned}
$$

Since this is a telescoping sum we finally get $\mathrm{E}[X]=\sum_{j \in[d]} f_{j}^{k}$ as desired. We will use similar techniques to compute the variance of X.

$$
\begin{aligned}
\operatorname{Var}[X] & \leq \mathrm{E}\left[X^{2}\right] \\
& =\sum_{j \in[d]} \operatorname{Pr}[A=j] \mathrm{E}\left[X^{2} \mid A=j\right] \\
& =\sum_{j \in[d]} \frac{f_{j}}{m} \sum_{i=1}^{f_{j}} \frac{1}{f_{j}}\left(m\left(i^{k}-(i-1)^{k}\right)\right)^{2} \\
& =m \sum_{j \in[d]} \sum_{i=1}^{f_{j}}\left(i^{k}-(i-1)^{k}\right)^{2}
\end{aligned}
$$

If we consider the polynomial $x^{k}-(x-1)^{k}$ we can say, using Mean Value Theorem, that $\exists g(x) \in(x-1, x)$ such that $x^{k}-(x-1)^{k}=k g(x)^{k-1} \leq k x^{k-1}$. Thus if we apply this once to the above equation we get

$$
\begin{aligned}
\operatorname{Var}[X] & \leq m \sum_{j \in[d]} \sum_{i=1}^{f_{j}}\left(i^{k}-(i-1)^{k}\right)^{2} \\
& \leq m \sum_{j \in[d]} \sum_{i=1}^{f_{j}} k i^{k-1}\left(i^{k}-(i-1)^{k}\right) \\
& \leq m k \sum_{j \in[d]} f_{j}^{k-1} \sum_{i=1}^{f_{j}}\left(i^{k}-(i-1)^{k}\right) \\
& =m k \sum_{j \in[d]} f_{j}^{k-1} f_{j}^{k} \\
& =m k \sum_{j \in[d]} f_{j}^{2 k-1} \\
& =k F_{1} F_{2 k-1}
\end{aligned}
$$

So we can see that this algorithm gives us a desirable expected value but the variance can potentially be very large. To finish this bound we will consider the following Lemma.

Lemma $3 \quad F_{1} F_{2 k-1} \leq n^{1-\frac{1}{k}}\left(F_{k}\right)^{2}$.
The proof will be presented in the next lecture.

References

AMS99 N. Alon, Y. Matias, and M. Szegedy, The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci., 31(2):137-147, 1999.

BJKST02 Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, L. Trevisan, Counting Distinct Elements in a Data Stream. Proceedings of the 6th International Workshop on Randomization and Approximation Techniques, p.1-10, 2002.

