CMPUT 675: Algorithms for Streaming and Big DataFall 2019Lecture 3 (Sep 11, 2019): BJKST Algorithm and AMS $F_k(\sigma)$ EstimatorLecturer: Mohammad R. SalavatipourScribe: Brandon Fuller

3.1 Bar-yossef, Jayram, Kumar, Sivakumar, Trevisan Algorithm

For a better estimator of $F_0(\sigma)$ (determining the number of unique elements in our stream σ) we look to an algorithm from [BJKST02] that improves upon the *Flajolet-Martin Counter*.

For the *Flajolet-Martin Counter*, we only kept the smallest element produced by our 2-universal hash family $H:[m] \to [0,1]$ and expected that after d distinct elements were processed we would have gaps of equal spacing roughly equal to $\frac{1}{d+1}$. Using the smallest element we approximated d.

Instead of keeping track of the smallest element, we keep track of the t smallest hash values seen so far (this can be done using a heap). Using a similar analysis as above; for a 2-universal hash family $H : [m] \to [0, 1]$ we expect that the number of hashed values that are less than $\frac{t}{d}$ should be t. Thus we expect largest of these t elements to be $\frac{t}{d}$. To achieve a $(1 + \epsilon)$ -approximation we must choose t large enough. Specifically we will consider $t = \frac{c}{\epsilon^2}$ for some constant c.

BJKST Algorithm

- 1. Choose a 2-universal hash family $H:[m] \to [M=m^3]$
- 2. $t \leftarrow \frac{c}{\epsilon^2}$
- 3. While there is another a_i from σ do:
 - Update the smallest t hash values with $h(a_i)$
- 4. Let v be the largest of the t smallest hash values
- 5. Return $\tilde{d} = \frac{tM}{v}$ (Since we expect $v \approx \frac{tM}{d}$)

Since the hash function from our 2-universal hash family is mapping m things to m^3 spots we expect that the probability that there are any collisions is at most $\frac{m^2}{m^3} = \frac{1}{m}$. Since m is large, we will assume that there are no collisions.

3.1.1 Analysis

This algorithm uses $O(\frac{1}{\epsilon^2} \log m)$ space (for storing the *t* smallest elements and $\log m$ bits) which can even be improved to roughly $O(\frac{1}{\epsilon^2} + \log m)$ (see [BJKST02]). We will now prove with the following two lemmas that this is a $(1 + \epsilon, 1 - \delta)$ -estimator. For the following proofs, assume our distinct values are $b_1, ..., b_d$.

Lemma 1 $\Pr[\tilde{d} > (1+\epsilon)d] \leq \frac{16}{\epsilon}$.

Proof. Suppose $\frac{tM}{v} = \tilde{d} > (1+\epsilon)d$. So $v < \frac{tM}{(1+\epsilon)d}$ which implies from the definition of v that at least t of the hash values $h(b_1), ..., h(b_d)$ are less than $\frac{tM}{(1+\epsilon)d} \le \frac{(1-\frac{\epsilon}{2})tM}{d}$ (for small values of ϵ). For each $h(b_i)$, the probability of being smaller than $\frac{(1-\frac{\epsilon}{2})tM}{d}$ is at most $\frac{(1-\frac{\epsilon}{2})t}{d} + \frac{1}{M} < \frac{(1-\frac{\epsilon}{4})t}{d}$, where the $\frac{1}{M}$ comes from scaling.

Let X_i be the 0-1 random variable for $h(b_i) < \frac{(1-\frac{\epsilon}{2})tM}{d}$ and let $Y = \sum_{i=1}^m X_i$. From above, $E[X_i] \le \frac{(1-\frac{\epsilon}{4})t}{d}$. Thus from Lemma 1 from Lecture 2 we have that:

 $Var[Y] \le \mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[X_i] \le \sum_{i=1}^{d} \frac{(1-\frac{\epsilon}{4})t}{d} = (1-\frac{\epsilon}{4})t$

So by relating the probability of our estimate to the variable Y and using Chebyshev we get the following:

$$\begin{aligned} \Pr[\tilde{d} > (1+\epsilon)d] &\leq & \Pr[Y > t] \\ &\leq & \Pr[|Y - \mathbb{E}[Y]| > \frac{\epsilon t}{4}] \\ &\leq & \frac{16 Var[Y]}{e^2 t^2} \\ &\leq & \frac{16(1-\frac{\epsilon}{4})t}{e^2 t^2} \\ &= & \frac{16-4\epsilon}{c}. \\ &\leq & \frac{16}{c} \end{aligned}$$

Lemma 2 $\Pr[\tilde{d} < (1-\epsilon)d] \leq \frac{1}{c}$.

Proof. We note that for a constant $\alpha > 1$, $\frac{1}{1-\epsilon} \le (1+\alpha\epsilon)$ for a small enough ϵ .

Suppose now that $\tilde{d} = \frac{tM}{v} < (1-\epsilon)d$. Which implies $v < \frac{tM}{(1-\epsilon)d}$. Again this means that less than t of the hash values $h(b_1), \dots, h(b_d)$ are smaller than $\frac{tM}{(1-\epsilon)d} \leq \frac{(1+\frac{3}{2}\epsilon)tM}{d}$. For each $h(b_i)$, the probability of being smaller than $\frac{(1+\frac{3}{2}\epsilon)tM}{d}$ is at most $\frac{(1+\frac{3}{2}\epsilon)t}{d} + \frac{1}{M} < \frac{(1+2\epsilon)t}{d}$.

Let X_i be the 0-1 random variable for $h(b_i) < \frac{(1+2\epsilon)tM}{d}$ and let $Y = \sum_{i=1}^m X_i$. From above, $E[X_i] \le \frac{(1+2\epsilon)t}{d}$. Thus from Lemma 1 from Lecture 2 we have that:

$$Var[Y] \le \mathbf{E}[Y] = \sum_{i=1}^{m} \mathbf{E}[X_i] \le \sum_{i=1}^{d} \frac{(1+2\epsilon)t}{d} = (1+2\epsilon)t.$$

Similar to the previous lemma we get the following:

$$\begin{aligned} \Pr[\tilde{d} < (1-\epsilon)d] &\leq & \Pr[Y < t] \\ &\leq & \Pr[|Y - \mathbf{E}[Y]| > 2\epsilon] \\ &\leq & \frac{Var[Y]}{4e^2t^2} \\ &\leq & \frac{(1+2\epsilon)t}{4e^2t^2} \\ &= & \frac{1+2\epsilon}{4c} \\ &\leq & \frac{1}{c} \end{aligned}$$

As an example, if we choose c = 96 we get a $(1 + \epsilon, 1 - \frac{1}{3})$ -estimator.

3.2 AMS $F_k(\sigma)$ Estimator

So far we have only looked at $F_0(\sigma)$ and $F_1(\sigma)$ estimators. The first general $F_k(\sigma)$ estimator we will consider is the following algorithm which was presented in [AMS99] alongside their $F_0(\sigma)$ estimator.

1. $m \leftarrow 0, r \leftarrow 0, a \leftarrow 0$

AMS $F_k(\sigma)$ Algorithm

- 2. While there is another item do:
 - $\bullet \ m \leftarrow m+1$
 - $\beta \leftarrow$ random boolean with $\Pr[\beta = 1] = \frac{1}{m}$
 - If $\beta = 1$; $a \leftarrow a_m$, $r \leftarrow 1$
 - Else if $a_m = a; r \leftarrow r + 1$
- 3. Return $m(r^k (r-1)^k)$

The probability of the *j*-th item being selected as the last token is exactly equal to $\frac{1}{j} \times \frac{j}{j+1} \times \ldots \times \frac{m-1}{m} = \frac{1}{m}$. Thus this algorithm will randomly select one of the *m* items. After the stream has been processed (with, say the *J*-th item being randomly selected), then $r = |\{j : a_j = a_J, J \leq j \leq m\}|$ (the number of items in the suffix of the stream past the *J*-th element that are the same as a_J).

It may not be immediately clear why we choose the specific return value. To understand this choice we will consider the analysis of this algorithm.

3.2.1 Analysis

Clearly we have that $\Pr[J = j] = \frac{f_J}{m}$. To understand the analysis of this algorithm, we will instead use the following equivalent process of selecting *a*:

1. Pick a random $a \in [d]$.

2. Uniformly at random select one of the occurrences of a from σ .

Let X be the random variable for the output of the algorithm and A and R the random variables for a and r respectively.

 $\mathbf{E}[X] = \sum_{j \in [d]} \Pr[A = j] \mathbf{E}[X|A = j] = \sum_{j \in [d]} \frac{f_j}{m} \mathbf{E}[m(R^k - (R-1)^k)|A = j]$

Once we are given that A = j, we have that R is equally likely to be any of the values $\{1, ..., f_j\}$. If $R = i \in \{1, ..., f_j\}$ then $\Pr[R = i | A = j] = \frac{1}{f_j}$ and $X = m(i^k - (i - 1)^k)$. Using this we get:

$$E[X] = \sum_{j \in [d]} \frac{f_j}{m} E[m(R^k - (R-1)^k) | A = j]$$

=
$$\sum_{j \in [d]} \frac{f_j}{m} \sum_{i=1}^{f_j} \frac{1}{f_j} m(i^k - (i-1)^k)$$

=
$$\sum_{j \in [d]} \sum_{i=1}^{f_j} i^k - (i-1)^k$$

Since this is a telescoping sum we finally get $E[X] = \sum_{j \in [d]} f_j^k$ as desired. We will use similar techniques to compute the variance of X.

$$\begin{aligned} \operatorname{Var}[X] &\leq \operatorname{E}[X^2] \\ &= \sum_{j \in [d]} \Pr[A = j] \operatorname{E}[X^2 | A = j] \\ &= \sum_{j \in [d]} \frac{f_j}{m} \sum_{i=1}^{f_j} \frac{1}{f_j} (m(i^k - (i-1)^k))^2 \\ &= m \sum_{j \in [d]} \sum_{i=1}^{f_j} (i^k - (i-1)^k)^2 \end{aligned}$$

If we consider the polynomial $x^k - (x-1)^k$ we can say, using Mean Value Theorem, that $\exists g(x) \in (x-1,x)$ such that $x^k - (x-1)^k = kg(x)^{k-1} \le kx^{k-1}$. Thus if we apply this once to the above equation we get

$$\begin{aligned} \operatorname{Var}[X] &\leq m \sum_{j \in [d]} \sum_{i=1}^{f_j} (i^k - (i-1)^k)^2 \\ &\leq m \sum_{j \in [d]} \sum_{i=1}^{f_j} k i^{k-1} (i^k - (i-1)^k) \\ &\leq mk \sum_{j \in [d]} f_j^{k-1} \sum_{i=1}^{f_j} (i^k - (i-1)^k) \\ &= mk \sum_{j \in [d]} f_j^{k-1} f_j^k \\ &= mk \sum_{j \in [d]} f_j^{2k-1} \\ &= k F_1 F_{2k-1} \end{aligned}$$

So we can see that this algorithm gives us a desirable expected value but the variance can potentially be very large. To finish this bound we will consider the following Lemma.

Lemma 3 $F_1F_{2k-1} \leq n^{1-\frac{1}{k}}(F_k)^2$.

The proof will be presented in the next lecture.

References

- AMS99 N. ALON, Y. MATIAS, AND M. SZEGEDY, The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci., 31(2):137-147, 1999.
- BJKST02 Z. BAR-YOSSEF, T. S. JAYRAM, R. KUMAR, D. SIVAKUMAR, L. TREVISAN, Counting Distinct Elements in a Data Stream. Proceedings of the 6th International Workshop on Randomization and Approximation Techniques, p.1-10, 2002.