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3.1 Bar-yossef, Jayram, Kumar, Sivakumar, Trevisan Algorithm

For a better estimator of F0(σ) (determining the number of unique elements in our stream σ) we look to an
algorithm from [BJKST02] that improves upon the Flajolet-Martin Counter.

For the Flajolet-Martin Counter, we only kept the smallest element produced by our 2-universal hash family
H : [m]→ [0, 1] and expected that after d distinct elements were processed we would have gaps of equal spacing
roughly equal to 1

d+1 . Using the smallest element we approximated d.

Instead of keeping track of the smallest element, we keep track of the t smallest hash values seen so far (this
can be done using a heap). Using a similar analysis as above; for a 2-universal hash family H : [m] → [0, 1]
we expect that the number of hashed values that are less than t

d should be t. Thus we expect largest of these
t elements to be t

d . To achieve a (1 + ε)-approximation we must choose t large enough. Specifically we will
consider t = c

ε2 for some constant c.

BJKST Algorithm

1. Choose a 2-universal hash family H : [m]→ [M = m3]

2. t← c
ε2

3. While there is another ai from σ do:

• Update the smallest t hash values with h(ai)

4. Let v be the largest of the t smallest hash values

5. Return d̃ = tM
v (Since we expect v ≈ tM

d )

Since the hash function from our 2-universal hash family is mapping m things to m3 spots we expect that the

probability that there are any collisions is at most m2

m3 = 1
m . Since m is large, we will assume that there are no

collisions.

3.1.1 Analysis

This algorithm uses O( 1
ε2 logm) space (for storing the t smallest elements and logm bits) which can even be

improved to roughly O( 1
ε2 + logm) (see [BJKST02]). We will now prove with the following two lemmas that

this is a (1 + ε, 1− δ)-estimator. For the following proofs, assume our distinct values are b1, ..., bd.

Lemma 1 Pr[d̃ > (1 + ε)d] ≤ 16
c .
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Proof. Suppose tM
v = d̃ > (1 + ε)d. So v < tM

(1+ε)d which implies from the definition of v that at least t of the

hash values h(b1), ..., h(bd) are less than tM
(1+ε)d ≤

(1− ε2 )tM
d (for small values of ε). For each h(bi), the probability

of being smaller than
(1− ε2 )tM

d is at most
(1− ε2 )t
d + 1

M <
(1− ε4 )t
d , where the 1

M comes from scaling.

Let Xi be the 0-1 random variable for h(bi) <
(1− ε2 )tM

d and let Y =
∑m
i=1Xi. From above, E[Xi] ≤

(1− ε4 )t
d .

Thus from Lemma 1 from Lecture 2 we have that:

V ar[Y ] ≤ E[Y ] =
∑m
i=1 E[Xi] ≤

∑d
i=1

(1− ε4 )t
d = (1− ε

4 )t

So by relating the probability of our estimate to the variable Y and using Chebyshev we get the following:

Pr[d̃ > (1 + ε)d] ≤ Pr[Y > t]

≤ Pr[|Y − E[Y ]| > εt

4
]

≤ 16V ar[Y ]

e2t2

≤
16(1− ε

4 )t

e2t2

=
16− 4ε

c
.

≤ 16

c

Lemma 2 Pr[d̃ < (1− ε)d] ≤ 1
c .

Proof. We note that for a constant α > 1, 1
1−ε ≤ (1 + αε) for a small enough ε.

Suppose now that d̃ = tM
v < (1− ε)d. Which implies v < tM

(1−ε)d . Again this means that less than t of the hash

values h(b1), ..., h(bd) are smaller than tM
(1−ε)d ≤

(1+ 3
2 ε)tM

d . For each h(bi), the probability of being smaller than
(1+ 3

2 ε)tM

d is at most
(1+ 3

2 ε)t

d + 1
M < (1+2ε)t

d .

Let Xi be the 0-1 random variable for h(bi) <
(1+2ε)tM

d and let Y =
∑m
i=1Xi. From above, E[Xi] ≤ (1+2ε)t

d .
Thus from Lemma 1 from Lecture 2 we have that:

V ar[Y ] ≤ E[Y ] =
∑m
i=1 E[Xi] ≤

∑d
i=1

(1+2ε)t
d = (1 + 2ε)t.

Similar to the previous lemma we get the following:
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Pr[d̃ < (1− ε)d] ≤ Pr[Y < t]

≤ Pr[|Y − E[Y ]| > 2ε]

≤ V ar[Y ]

4e2t2

≤ (1 + 2ε)t

4e2t2

=
1 + 2ε

4c

≤ 1

c

As an example, if we choose c = 96 we get a (1 + ε, 1− 1
3 )-estimator.

3.2 AMS Fk(σ) Estimator

So far we have only looked at F0(σ) and F1(σ) estimators. The first general Fk(σ) estimator we will consider
is the following algorithm which was presented in [AMS99] alongside their F0(σ) estimator.

AMS Fk(σ) Algorithm

1. m← 0, r ← 0, a← 0

2. While there is another item do:

• m← m+ 1

• β ← random boolean with Pr[β = 1] = 1
m

• If β = 1; a← am, r ← 1

• Else if am = a; r ← r + 1

3. Return m(rk − (r − 1)k)

The probability of the j-th item being selected as the last token is exactly equal to 1
j ×

j
j+1 × ... ×

m−1
m = 1

m .

Thus this algorithm will randomly select one of the m items. After the stream has been processed (with, say
the J-th item being randomly selected), then r = |{j : aj = aJ , J ≤ j ≤ m}| (the number of items in the suffix
of the stream past the J-th element that are the same as aJ).

It may not be immediately clear why we choose the specific return value. To understand this choice we will
consider the analysis of this algorithm.

3.2.1 Analysis

Clearly we have that Pr[J = j] = fJ
m . To understand the analysis of this algorithm, we will instead use the

following equivalent process of selecting a:

1. Pick a random a ∈ [d].
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2. Uniformly at random select one of the occurrences of a from σ.

Let X be the random variable for the output of the algorithm and A and R the random variables for a and r
respectively.

E[X] =
∑
j∈[d] Pr[A = j]E[X|A = j] =

∑
j∈[d]

fj
mE[m(Rk − (R− 1)k)|A = j]

Once we are given that A = j, we have that R is equally likely to be any of the values {1, ..., fj}. If R = i ∈
{1, ..., fj} then Pr[R = i|A = j] = 1

fj
and X = m(ik − (i− 1)k). Using this we get:

E[X] =
∑
j∈[d]

fj
m

E[m(Rk − (R− 1)k)|A = j]

=
∑
j∈[d]

fj
m

fj∑
i=1

1

fj
m(ik − (i− 1)k)

=
∑
j∈[d]

fj∑
i=1

ik − (i− 1)k

Since this is a telescoping sum we finally get E[X] =
∑
j∈[d] f

k
j as desired. We will use similar techniques to

compute the variance of X.

Var[X] ≤ E[X2]

=
∑
j∈[d]

Pr[A = j]E[X2|A = j]

=
∑
j∈[d]

fj
m

fj∑
i=1

1

fj
(m(ik − (i− 1)k))2

= m
∑
j∈[d]

fj∑
i=1

(ik − (i− 1)k)2

If we consider the polynomial xk− (x−1)k we can say, using Mean Value Theorem, that ∃g(x) ∈ (x−1, x) such
that xk − (x− 1)k = kg(x)k−1 ≤ kxk−1. Thus if we apply this once to the above equation we get
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Var[X] ≤ m
∑
j∈[d]

fj∑
i=1

(ik − (i− 1)k)2

≤ m
∑
j∈[d]

fj∑
i=1

kik−1(ik − (i− 1)k)

≤ mk
∑
j∈[d]

fk−1j

fj∑
i=1

(ik − (i− 1)k)

= mk
∑
j∈[d]

fk−1j fkj

= mk
∑
j∈[d]

f2k−1j

= kF1F2k−1

So we can see that this algorithm gives us a desirable expected value but the variance can potentially be very
large. To finish this bound we will consider the following Lemma.

Lemma 3 F1F2k−1 ≤ n1−
1
k (Fk)2.

The proof will be presented in the next lecture.
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