
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 18 (Nov 6, 2019): Clustering Problems and Matrix Multiplication

Lecturer: Mohammad R. Salavatipour Scribe: Candelario Gutierrez

18.1 Clustering Problems

We will discuss one specific clustering problem and present an algorithm in the streaming model for it.

18.1.1 Definition

A metric space (X, d) where X is a non-empty set and d : X ×X → R is a function that assigns values to pairs
of points such that for all x, y ∈ X):

1. d(x, y) = 0←→ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Typically, given a set P ⊆ X, an integer parameter k, the goal is to partition P into k parts/clusters C1, . . . , Ck,
each having a center ci to optimize (minimize) some function:

• k-Centre

– cost(P,C) = min︸ ︷︷ ︸
4∞(P,C)

maxp∈P min {d(p, ci)}

– Has 2-approximation in offline setting and (2− ε)-hard to approximate.

• k-Median

– cost(P,C) = min︸ ︷︷ ︸
41(P,C)

∑
p∈P

minci {d(p, ci)}

• k-Means

– 42(P,C)min
∑
p∈P

minci d(p, ci)
2

Lemma 1 Suppose x1, . . . , xk+1 ∈ P are points, such that d(xi, xj) ≥ ε for ∀xi, xj. Then for all sets C ⊆ X,
∆∞(P,C) ≥ ε

2 .

Proof. By way of contradiction suppose that there is a set C ⊆ X such that ∆∞(P,C) < ε/2. Then no two
points xi, xj can be in the same cluster we need at least k + 1 clusters to cover all of them.

We present an 8-approximation for the k-center problem in the streaming setting. The algorithm, proposed by
M. Charikar, C. Chekuri, T. Feder and R. Motwani called the doubling algorithm[CCFM04]. The algorithm
always maintains a set C, |C| = k of centres, uses O(k) space and matains a threshold τ as estimate of optimum.

18-1

18-2 Lecture 18: Clustering Problems and Matrix Multiplication

Doubling algorithm

1) Let S be the first k + 1 points of stream
2) Let (x, y)← arg min(u,v)εS d(u, v)
3) τ ← d(x, y), C ← S\ {x}
4) For each new point p do
5) if mincεC d(p, c) > 2τ then
6) C ← C ∪ {p}
7) while |C| > k do
8) C ← maximal C ′ ⊆ C such that ∀u, v ∈ C ′ : d(u, v) ≥ 2τ
9) τ ← 2τ

Lemma 2 The following invariants hold for the doubling algorithm each time Step 4 is executed:

1. ∀u, v ∈ C : d(u, v) ≥ τ .

2. ∆∞(σ,C) ≤ 2τ .

and the following holds immediately after step 3 and before execution of Step 8: ∀C∗ ⊆ X with |C∗| = k:
∆∞(σ,C∗) ≥ τ/2.

Proof. By induction: The base case is right after initialization. We have that not only |C| = k , but also
d(u, v) ≥ τ where this holds for the first k + 1 points and proprty 2) follows immediately follows. Property 3)
follows from the previous lemma.

For induction step we have two cases based on minc∈C d(p, c). In the case that the “if condition” of line (5) is
not satisfied, nothing changes and is easy to verify that all 3 invariants hold.

So, lets assume that it is satisfied, i.e. minc∈Cd(p, c) > 2τ . Then ∆∞(σ ∪ {p}, C ∪ {p}) = ∆∞(σ,C) ≤ 2τ ,
so Step 6) preserves property 2. Also, using induction hypothesis and since minc∈Cd(p, c) > 2τ , property 1 is
preserved. But |C| = k+1, so previous lemma together with 1) implies that property 3 is preserved. We have to
show that properties are maintained after execution of lines 8) and 9). Note that property 1) will be preserved
since each time we select C ′ in line 8) we have d(u, v) ≥ 2τ (so we have property 1 even after doubling τ in line
9). Therefore, we need to show that: 4∞(σ,C ′) ≤ 2τ .

Let x be an arbitrary point from σ. By property 2) d(x,C) ≤ ∆∞(σ,C) ≤ 2τ before line 8 is executed. Let r
be the closest point to x in C. If r ∈ C ′ then d(x,C ′) ≤ d(x, r) ≤ 2τ . If r 6∈ C ′ then since C ′ ⊆ C is maximal,
there is a point s ∈ C ′ such that d(r, s) < 2τ . Since s ∈ C ′ we have:

d(x,C ′) ≤ d(x, s) ≤ d(x, r) + d(r, s) < 2τ + 2τ = 4τ.

So after line 8), we have ∆∞(σ,C) < 4τ and after line 9) this implies ∆∞(σ,C) ≤ 2τ , so property 2) still holds.

Using property 3) and observing that step 9) doubles the value of τ , and using property 2) we obtain:

Theorem 1 The doubling algorithm is an 8-approx.

Lecture 18: Clustering Problems and Matrix Multiplication 18-3

18.2 Matrix Multiplication

Given two matrices A ∈ Rm×n and B ∈ Rn×p we would like to compute C = A × B. The standard matrix
multiplication takes O(mnp) time. For large values of m,n, p this is way too slow. By using Strassen’s like
divide and conquer algorithms we can improve the run time.

Our goal is to find an approximate answer fast. More specifically, we would like to find C such that ‖ C−AB ‖x<
ε with probability 1− δ for some measure of norm.

Frobenius norm: treat matrices like vectors and

||A||F = (
∑
i,j

A2
ij)

1
2 . It can be shown that m ||AB||F ≤ ||A||F ||B||F .

Spectral norm: Sup||x||2=1||Ax||2. Aagain, one can show that ||AB||2 ≤ ||A||2||B||2.

For any matrix M , let Mi,j denote row i and M (j) denote column j

cij = 〈A(i), B
(j)〉 =

n∑
k=1

AikBkj

AB =

n∑
j=1

A(j)B(j)

Here we present an approximate multiplication algorithm (proposed by P. Drineas, R. Kannan and M. Mahone
[DKM06].)

We first pick a probability distribution over [n], p1 + p2 + ... + pn = 1 and then for k = 1 to t pick an index
jk ∈ [n] according to pjk and let

c =
1

t

t∑
k=1

1

pjk
A(jk)B(jk)

Note that C = 1
t

∑t
k=1 ck and E[ck] =

∑n
`=1 p` ·

1
p`
A(`)B(`) = AB, thus E[c] = AB.

Suppose that we want ||C−AB||F ≤ ε||A||F ||B||F . We choose p′js such that each one corresponds to contribution

of A(jk)B(jk) to ||AB||F . By using the fact that

‖ A(j)B(j) ‖2=‖ A(j) ‖2‖ B(j) ‖2

it turns out that using

pj =
‖A(j)‖2‖B(j)‖2∑̀
‖A(`)‖2‖B‖2

is optimized. In the next lecture we will continue with its expected value and probability.

18-4 Lecture 18: Clustering Problems and Matrix Multiplication

References

CCFM04 M. Charikar, C. Chekuri, T. Feder, R. Motwani. Incremental Clustering and Dynamic Information Re-
trieval.SIAM J. Comput., 33. 1417-1440, 2004.

DKM06 P. Drineas, R. Kannan, M. Mahoney. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix
Multiplication.SIAM J. Comput., 36. 132-157, 2006.

