17.1 Selection

In this section we will finish the discussion of Munro-Patterson algorithm for selection. Recall that the algorithm would have multiple passes. In each pass over the data, it would reduce the size of the problem to an instance over $O\left(n \log ^{2} n / s\right)$ items using a buffer of size s, this was done by taking an i-sample in pass i with two lower/upper bound filters a_{i}, b_{i}.

Lemma 1 Suppose $x_{1}<\cdots<x_{s}$ is an i-sample of a population P of size 2^{i} s. Then for each $j, 2^{i} j \leq$ $\operatorname{rank}\left(x_{j}, P\right) \leq 2^{i}(i+j)$.

Proof. Let $L_{i j}$ and $M_{i j}$ be the least/most bounds for $\operatorname{rank}\left(x_{j}, P\right)$ in the i th sample of our process. Using induction on i, it is clear that when $i=0, \operatorname{rank}\left(x_{j}, P\right)=j$ and thus the property holds (since the i-samples are sorted). Now suppose $i>0$ and notice that the x_{1}, \ldots, x_{s} were selected from two $i-1$-samples, say y_{1}, \ldots, y_{s} and z_{1}, \ldots, z_{s}. We notice that in our i-sample, if p elements less than x_{j} come from the list y_{1}, \ldots, y_{s} then $j-p$ elements less than x_{j} come from the list z_{1}, \ldots, z_{s}. Thus, since the i-sample takes even elements from each list we get the following (using the induction hypothesis):

$$
L_{i j}=\min _{p}\left\{L_{i-1,2 p}+L_{i-1,2(j-p)}\right\}=\min _{p}\left\{2^{i-1} 2 p+2^{i-1} 2(j-p)\right\}=\min _{p}\left\{2^{i} p+2^{i} j-2^{i} p\right\}=2^{i} j
$$

and using a similar argument for $M_{i j}$ we get:

$$
\begin{aligned}
M_{i j} & =\max _{p}\left\{M_{i-1,2 p}+M_{i-1,2(j-p+1)}\right\} \\
& =\max _{p}\left\{2^{i-1}(i-1+2 p)+2^{i-1}(i-1+2(j-p+1))\right\} \\
& =\max _{p}\left\{2^{i-1} i-2^{i-1}+2^{i} p+2^{i-1} i-2^{i-1}+2^{i} j-2^{i} p+2^{i}\right\} \\
& =2^{i} i+2^{i} j \\
& =2^{i}(i+j)
\end{aligned}
$$

Thus if we are interested in finding a element with rank k, we want to maintain filters a_{i}, b_{i} at each level of the i-sample such that for all elements x_{j}, if $a_{i} \leq x_{j} \leq b_{i}$ then $\operatorname{rank}\left(x_{j}, P\right)$ is a contender for an element with rank k. More specifically, $2^{i} j \leq k \leq 2^{i}(i+j)$. Thus we want the smallest a_{i} such that $M_{i a} \geq k$; choosing $a_{i}=\left\lceil\frac{k}{2_{i}}\right\rceil-i$ suffices. Similarly we want the largest b_{i} such that $L_{i b} \leq k$; choosing $b_{i}=\left\lfloor\frac{k}{2_{i}}\right\rfloor$ suffices. So if m_{i} is the number of elements between a_{i} and b_{i} we can see that $m_{i+1}=O\left(\frac{m_{i} \log ^{2}(n)}{s}\right)$ where n is the original population size. Thus we can see that our choice in s from the last lecture is correct.

17.2 Coresets

We now switch to some geometric problems in the streaming setting. To do so we start with the notion of coresets via a specific problem (called minimum enclosing ball MEB). Roughly speaking, coresets of a set points is a much smaller (than original input) sample that preserves a lot of properties of the input. The ideas used in this section are similar to the previous two selection algorithms in terms of combining and sparsifying sets.

Definition 1 A metric space is a pair (χ, d) where χ is a non-empty set of points and $d: \chi \times \chi \rightarrow \mathbb{R} \geq 0$ is a distance function satisfying

1. $d(x, y)=d(y, x)$
2. $d(x, y)=0 \Leftrightarrow x=y$
3. $d(x, z) \leq d(x, y)+d(y, z), \forall x, y, z \in \chi$; meaning d satisfies the triangle inequality.

So, if χ is finite, we can think of this as a complete graph where the vertices are the elements of χ and the edges have edge weights corresponding to the distances between pairs of points (and thus the edge weights satisfy the triangle inequality). One example of a distance function would the the ℓ_{p}-norm; $d(x, y)=\|x-y\|_{p}$.

For a set $P \subseteq \chi$ and $q \in \chi$. We define the function $\operatorname{cost}(P, q)=\max _{p \in P}\{d(q, p)\}$; the maximum distance between q and a point in P.

Definition 2 Let $P \subseteq \chi$. A coreset $Q \subseteq P$ is an ϵ-coreset if $\forall y \in \chi$

$$
(1-\epsilon) \operatorname{cost}(P, y) \leq \operatorname{cost}(Q, y) \leq(1+\epsilon) \operatorname{cost}(P, y)
$$

Generally, a coreset's size is much smaller than the size of the original set. These definitions hold in general, but for the rest of this lecture we will consider $\chi=\mathbb{R}^{d}$ and $d(x, y)=\|x-y\|_{2}$ as the Euclidean distance.

17.2.1 Minimum Enclosing Ball and Offline Coreset

Definition 3 Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$. The minimum enclosing ball (MEB) of the set P is defined by the point $x \in \mathbb{R}^{d}$ which minimizes $\operatorname{cost}(P, x)$. The cost function is the radius of this MEB.

We will use MEB to design an offline coreset algorithm. We will then use this algorithm as a subpart of a streaming algorithm for finding a ϵ-coreset.

Lemma 2 Suppose B is a $M E B$ of $P \subseteq \mathbb{R}^{d}$ with center c and radius r. Then any enclosed half-space that contains c also contains a point $x \in P$ such that $d(x, c)=r$.

Proof.

Suppose towards a contradiction that this is not the case. Let H be the half-space and \bar{H} be everything else. Clearly, if H contains no point at distance r, then \bar{H} must. But this means $\exists \delta$ small enough such that a point $c^{\prime} \in H$ with $d\left(c, c^{\prime}\right)=\delta$ but c^{\prime} is closer to the half-space separation. It can be seen that c^{\prime} with radius r^{\prime} is also a MEB for P, where $r^{\prime}<r$. Below is an (exaggerated) illustration of this for $d=2$.

Theorem 1 Given $P \subseteq \mathbb{R}_{d}, \exists \epsilon$-coreset $S \subseteq P$ of size $2 \epsilon^{-1}$. Equivalently, if r_{P}, r_{S} is the radius of a MEB of P, S respectively; then $\frac{1}{1+\epsilon} r_{P} \leq r_{S} \leq r_{P}$.

Proof. Consider the following algorithm:

MEB ϵ-coreset (P)

1. Let $S_{1}=\{p\}$ for any arbitrary point $p \in P$.
2. For $i \leftarrow 1$ to $T=2 \epsilon^{-1}$ do:

- $c_{i} \leftarrow$ center of $\operatorname{MEB}\left(S_{i}\right)$.
- $p_{i} \leftarrow \arg \max _{p \in P} d\left(c_{i}, p\right)$
- $S_{i+1}=S_{i} \cup\left\{p_{i}\right\}$

3. Return S_{T}

Clearly, the return set of this algorithm returns a set of size $2 \epsilon^{-1}$ so we need only show that for $S=S_{T}$, that for r_{P}, r_{S} defined in the statement, $\frac{1}{1+\epsilon} r_{P} \leq r_{S} \leq r_{P}$. Since $S \subseteq P$, it is clear that $r_{S} \leq r_{P}$ thus we need only show the former inequality. Define the following variables:

- r_{i} as the radius of $\operatorname{MEB}\left(S_{i}\right)$
- $\lambda_{i}=\frac{r_{i}}{r_{P}}$
- $\delta_{i}=\left\|c_{i}-c_{i+1}\right\|$

First, we notice that $\forall i, \exists q \in P$ such that $d\left(c_{i}, q\right) \geq r_{P}$ (by definition of MEB). So, by the triangle inequality and our definitions we get that:

$$
\lambda_{i} r_{P}=r_{i+1} \geq d\left(q, c_{i+1}\right) \geq d\left(q, c_{i}\right)-d\left(c_{i}, c_{i+1}\right) \geq r_{P}-\delta_{i}
$$

So, if $\delta_{i}=0$, then we are done. So consider $\delta_{i}>0$. This means, $\exists p \in P$ such that $d\left(p, c_{i}\right)=r_{i}=\lambda_{i} r_{P}$. Thus since we are using euclidean distances:

$$
r_{i+1} \geq d\left(c_{i+1}, p\right)=\sqrt{r_{i}^{2}+\delta_{i}^{2}}=\sqrt{\lambda_{i}^{2} r_{P}^{2}+\delta_{i}^{2}}
$$

This combined with the fact above implies that $r_{i+1} \geq \max \left\{r_{P}-\delta_{i}, \sqrt{\lambda_{i}^{2} r_{P}^{2}+\delta_{i}^{2}}\right\}$ which is minimized when $r_{P}-\delta_{i}=\sqrt{\lambda_{i}^{2} r_{P}^{2}+\delta_{i}^{2}}$. Solving for δ_{i} gives $\delta_{i}=\frac{1}{2}\left(1-\lambda_{i}^{2}\right) r_{P}$. Substituting this δ_{i} into the first equation and solving gives us that $\lambda_{i+1} \geq \frac{1}{2}\left(1+\lambda_{i}^{2}\right)$. Solving this recursion finally gives that $\lambda_{i} \geq 1-\frac{1}{1+i / 2}$. Finally, to have $\lambda_{T} \geq 1-\epsilon$ (for our desired result for r_{S}) it is enough to set $T=2 \epsilon^{-1}$.
Finally, without proof, we note that there is a way to build coresets of size $O\left(\frac{1}{\epsilon^{(d-1) / 2}}\right)$ which is an improvement for $d=2$.

17.2.2 Streaming Model

Now we look at solving this problem in a streaming model. First, we consider the following remarks (without proof).

Remark 1 If Q, Q^{\prime} are ϵ-coresets for P, P^{\prime} respectively, then $Q \cup Q^{\prime}$ is an ϵ-coreset for $P \cup P^{\prime}$.

Remark 2 If R is an ϵ-coreset for Q and Q is an ϵ^{\prime}-coreset for P then R is an $\left(\epsilon+\epsilon^{\prime}\right)$-coreset for P.

So, if we split the input stream into chunks of size B, we can build a coreset for each chunk as leaves of a tree, and combine pairs of coresets using the above remarks until we have a single coreset for the whole stream. If the stream is of size m, then the tree would have a height of $\log \frac{m}{B}$. If we combine the coresets as soon as possible while building the tree, then we will need at most $O(\log m)$ coresets at any point in time. For the analysis below, let $A(\epsilon)$ be the space complexity of an ϵ-coreset. If we use our algorithm that was previously mentioned, $A(\epsilon)=O\left(\epsilon^{-1}\right)$. We have two methods of getting coresets for an input stream:

- Method 1: At the first level of making the coresets, make δ-coresets (where $\delta=\frac{\epsilon}{\log m}$) and combine two coresets Q_{1} and Q_{2} by finding a δ-coreset for the set $Q_{1} \cup Q_{2}$. Using the second remark, the final coreset of this algorithm will be an ϵ-coreset with a space complexity $O\left(A\left(\frac{\epsilon}{\log m}\right) \log m\right)$.
- Method 2: At the first level of making the coresets, make ϵ-coresets and combine them by using the ϵ-coreset $Q_{1} \cup Q_{2}$. By the first remark, the final coreset of this algorithm will be an ϵ-coreset with a space complexity $O\left(A(\epsilon) \log ^{2} m\right)$.

In both methods if we are using the algorithm that was presented we have an algorithm for obtaining an ϵ-coreset for a stream that uses $O\left(\epsilon^{-1} \log ^{2} m\right)$ space.

References

AHV04 P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating Extent Measures of Points. Journal of the ACM, 51(4):606635, 2004.

BC03 M. Bădoiu and K. L. Clarkson, Smaller Core-sets for Balls. In SODA '03: Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

BHI02 M. Bădoiu, S. Har-Peled, and P. Indyk, Approximate Clustering via Core-sets. In Proc. of the 34 th Annual ACM-SIAM Symp. on Theory of Computing, 2002.

MP80 J. I. Munro and M. S. Paterson, Selection and Sorting with Limited Storage. Theoretical Computer Science, 12(3):315-323, 1980.

