
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 17 (Nov 4, 2019): i-Sample and Coresets
Lecturer: Mohammad R. Salavatipour Scribe: Brandon Fuller

17.1 Selection

In this section we will finish the discussion of Munro-Patterson algorithm for selection. Recall that the algorithm
would have multiple passes. In each pass over the data, it would reduce the size of the problem to an instance over
O(n log2 n/s) items using a buffer of size s, this was done by taking an i-sample in pass i with two lower/upper
bound filters ai, bi.

Lemma 1 Suppose x1 < · · · < xs is an i-sample of a population P of size 2is. Then for each j, 2ij ≤
rank(xj , P) ≤ 2i(i+ j).

Proof. Let Lij and Mij be the least/most bounds for rank(xj , P) in the ith sample of our process. Using
induction on i, it is clear that when i = 0, rank(xj , P) = j and thus the property holds (since the i-samples are
sorted). Now suppose i > 0 and notice that the x1, . . . , xs were selected from two i− 1-samples, say y1, . . . , ys
and z1, . . . , zs. We notice that in our i-sample, if p elements less than xj come from the list y1, . . . , ys then j−p
elements less than xj come from the list z1, . . . , zs. Thus, since the i-sample takes even elements from each list
we get the following (using the induction hypothesis):

Lij = min
p
{Li−1,2p + Li−1,2(j−p)} = min

p
{2i−12p+ 2i−12(j − p)} = min

p
{2ip+ 2ij − 2ip} = 2ij

and using a similar argument for Mij we get:

Mij = max
p
{Mi−1,2p +Mi−1,2(j−p+1)}

= max
p
{2i−1(i− 1 + 2p) + 2i−1(i− 1 + 2(j − p+ 1))}

= max
p
{2i−1i− 2i−1 + 2ip+ 2i−1i− 2i−1 + 2ij − 2ip+ 2i}

= 2ii+ 2ij

= 2i(i+ j)

Thus if we are interested in finding a element with rank k, we want to maintain filters ai, bi at each level of the
i-sample such that for all elements xj , if ai ≤ xj ≤ bi then rank(xj , P) is a contender for an element with rank
k. More specifically, 2ij ≤ k ≤ 2i(i+j). Thus we want the smallest ai such that Mia ≥ k; choosing ai = d k2i e− i
suffices. Similarly we want the largest bi such that Lib ≤ k; choosing bi = b k2i c suffices. So if mi is the number

of elements between ai and bi we can see that mi+1 = O(mi log
2(n)

s) where n is the original population size.
Thus we can see that our choice in s from the last lecture is correct.

17-1

17-2 Lecture 17: i-Sample and Coresets

17.2 Coresets

We now switch to some geometric problems in the streaming setting. To do so we start with the notion of
coresets via a specific problem (called minimum enclosing ball MEB). Roughly speaking, coresets of a set points
is a much smaller (than original input) sample that preserves a lot of properties of the input. The ideas used in
this section are similar to the previous two selection algorithms in terms of combining and sparsifying sets.

Definition 1 A metric space is a pair (χ, d) where χ is a non-empty set of points and d : χ× χ→ R≥0 is a
distance function satisfying

1. d(x, y) = d(y, x)

2. d(x, y) = 0⇔ x = y

3. d(x, z) ≤ d(x, y) + d(y, z),∀x, y, z ∈ χ; meaning d satisfies the triangle inequality.

So, if χ is finite, we can think of this as a complete graph where the vertices are the elements of χ and the edges
have edge weights corresponding to the distances between pairs of points (and thus the edge weights satisfy the
triangle inequality). One example of a distance function would the the `p-norm; d(x, y) = ‖x− y‖p.

For a set P ⊆ χ and q ∈ χ. We define the function cost(P, q) = maxp∈P {d(q, p)}; the maximum distance
between q and a point in P .

Definition 2 Let P ⊆ χ. A coreset Q ⊆ P is an ε-coreset if ∀y ∈ χ

(1− ε)cost(P, y) ≤ cost(Q, y) ≤ (1 + ε)cost(P, y)

Generally, a coreset’s size is much smaller than the size of the original set. These definitions hold in general,
but for the rest of this lecture we will consider χ = Rd and d(x, y) = ‖x− y‖2 as the Euclidean distance.

17.2.1 Minimum Enclosing Ball and Offline Coreset

Definition 3 Let P = {p1, . . . , pn} ⊆ Rd. The minimum enclosing ball (MEB) of the set P is defined by
the point x ∈ Rd which minimizes cost(P, x). The cost function is the radius of this MEB.

We will use MEB to design an offline coreset algorithm. We will then use this algorithm as a subpart of a
streaming algorithm for finding a ε-coreset.

Lemma 2 Suppose B is a MEB of P ⊆ Rd with center c and radius r. Then any enclosed half-space that
contains c also contains a point x ∈ P such that d(x, c) = r.

Proof.

Suppose towards a contradiction that this is not the case. Let H be the half-space and H̄ be everything else.
Clearly, if H contains no point at distance r, then H̄ must. But this means ∃δ small enough such that a point
c′ ∈ H with d(c, c′) = δ but c′ is closer to the half-space separation. It can be seen that c′ with radius r′ is also
a MEB for P , where r′ < r. Below is an (exaggerated) illustration of this for d = 2.

Lecture 17: i-Sample and Coresets 17-3

r

c c′

Theorem 1 Given P ⊆ Rd, ∃ε-coreset S ⊆ P of size 2ε−1. Equivalently, if rP , rS is the radius of a MEB of
P, S respectively; then 1

1+εrP ≤ rS ≤ rP .

Proof. Consider the following algorithm:

MEB ε-coreset(P)

1. Let S1 = {p} for any arbitrary point p ∈ P .

2. For i← 1 to T = 2ε−1 do:

• ci ← center of MEB(Si).

• pi ← arg maxp∈P d(ci, p)

• Si+1 = Si ∪ {pi}

3. Return ST

Clearly, the return set of this algorithm returns a set of size 2ε−1 so we need only show that for S = ST , that
for rP , rS defined in the statement, 1

1+εrP ≤ rS ≤ rP . Since S ⊆ P , it is clear that rS ≤ rP thus we need only
show the former inequality. Define the following variables:

• ri as the radius of MEB(Si)

• λi = ri
rP

• δi = ‖ci − ci+1‖

First, we notice that ∀i,∃q ∈ P such that d(ci, q) ≥ rP (by definition of MEB). So, by the triangle inequality
and our definitions we get that:

λirP = ri+1 ≥ d(q, ci+1) ≥ d(q, ci)− d(ci, ci+1) ≥ rP − δi

So, if δi = 0, then we are done. So consider δi > 0. This means, ∃p ∈ P such that d(p, ci) = ri = λirP . Thus
since we are using euclidean distances:

ri+1 ≥ d(ci+1, p) =
√
r2i + δ2i =

√
λ2i r

2
P + δ2i

17-4 Lecture 17: i-Sample and Coresets

This combined with the fact above implies that ri+1 ≥ max{rP − δi,
√
λ2i r

2
P + δ2i } which is minimized when

rP − δi =
√
λ2i r

2
P + δ2i . Solving for δi gives δi = 1

2 (1 − λ2i)rP . Substituting this δi into the first equation and
solving gives us that λi+1 ≥ 1

2 (1 + λ2i). Solving this recursion finally gives that λi ≥ 1− 1
1+i/2 . Finally, to have

λT ≥ 1− ε (for our desired result for rS) it is enough to set T = 2ε−1.

Finally, without proof, we note that there is a way to build coresets of size O(1
ε(d−1)/2) which is an improvement

for d = 2.

17.2.2 Streaming Model

Now we look at solving this problem in a streaming model. First, we consider the following remarks (without
proof).

Remark 1 If Q,Q′ are ε-coresets for P, P ′ respectively, then Q ∪Q′ is an ε-coreset for P ∪ P ′.

Remark 2 If R is an ε-coreset for Q and Q is an ε′-coreset for P then R is an (ε+ ε′)-coreset for P .

So, if we split the input stream into chunks of size B, we can build a coreset for each chunk as leaves of a tree,
and combine pairs of coresets using the above remarks until we have a single coreset for the whole stream. If the
stream is of size m, then the tree would have a height of log m

B . If we combine the coresets as soon as possible
while building the tree, then we will need at most O(logm) coresets at any point in time. For the analysis
below, let A(ε) be the space complexity of an ε-coreset. If we use our algorithm that was previously mentioned,
A(ε) = O(ε−1). We have two methods of getting coresets for an input stream:

• Method 1: At the first level of making the coresets, make δ-coresets (where δ = ε
logm) and combine two

coresets Q1 and Q2 by finding a δ-coreset for the set Q1 ∪Q2. Using the second remark, the final coreset
of this algorithm will be an ε-coreset with a space complexity O(A(ε

logm) logm).

• Method 2: At the first level of making the coresets, make ε-coresets and combine them by using the
ε-coreset Q1 ∪Q2. By the first remark, the final coreset of this algorithm will be an ε-coreset with a space
complexity O(A(ε) log2m).

In both methods if we are using the algorithm that was presented we have an algorithm for obtaining an ε-coreset
for a stream that uses O(ε−1 log2m) space.

References

AHV04 P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating Extent Measures of Points.
Journal of the ACM, 51(4):606635, 2004.

BC03 M. Bădoiu and K. L. Clarkson, Smaller Core-sets for Balls. In SODA ’03: Proc. of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2003.

BHI02 M. Bădoiu, S. Har-Peled, and P. Indyk, Approximate Clustering via Core-sets. In Proc. of the 34th
Annual ACM-SIAM Symp. on Theory of Computing, 2002.

MP80 J. I. Munro and M. S. Paterson, Selection and Sorting with Limited Storage. Theoretical Computer
Science, 12(3):315-323, 1980.

