CMPUT 675: Algorithms for Streaming and Big Data

Fall 2019

Lecture 17 (Nov 4, 2019): i-Sample and Coresets

Lecturer: Mohammad R. Salavatipour

Scribe: Brandon Fuller

17.1 Selection

In this section we will finish the discussion of Munro-Patterson algorithm for selection. Recall that the algorithm would have multiple passes. In each pass over the data, it would reduce the size of the problem to an instance over $O(n \log^2 n/s)$ items using a buffer of size s, this was done by taking an *i*-sample in pass *i* with two lower/upper bound filters a_i, b_i .

Lemma 1 Suppose $x_1 < \cdots < x_s$ is an i-sample of a population P of size $2^i s$. Then for each j, $2^i j \leq rank(x_j, P) \leq 2^i (i+j)$.

Proof. Let L_{ij} and M_{ij} be the least/most bounds for $rank(x_j, P)$ in the *i*th sample of our process. Using induction on *i*, it is clear that when i = 0, $rank(x_j, P) = j$ and thus the property holds (since the *i*-samples are sorted). Now suppose i > 0 and notice that the x_1, \ldots, x_s were selected from two i - 1-samples, say y_1, \ldots, y_s and z_1, \ldots, z_s . We notice that in our *i*-sample, if *p* elements less than x_j come from the list y_1, \ldots, y_s then j - p elements less than x_j come from the list z_1, \ldots, z_s . Thus, since the *i*-sample takes even elements from each list we get the following (using the induction hypothesis):

$$L_{ij} = \min_{p} \{L_{i-1,2p} + L_{i-1,2(j-p)}\} = \min_{p} \{2^{i-1}2p + 2^{i-1}2(j-p)\} = \min_{p} \{2^{i}p + 2^{i}j - 2^{i}p\} = 2^{i}j$$

and using a similar argument for M_{ij} we get:

$$M_{ij} = \max_{p} \{M_{i-1,2p} + M_{i-1,2(j-p+1)}\}$$

=
$$\max_{p} \{2^{i-1}(i-1+2p) + 2^{i-1}(i-1+2(j-p+1))\}$$

=
$$\max_{p} \{2^{i-1}i - 2^{i-1} + 2^{i}p + 2^{i-1}i - 2^{i-1} + 2^{i}j - 2^{i}p + 2^{i}\}$$

=
$$2^{i}i + 2^{i}j$$

=
$$2^{i}(i+j)$$

Thus if we are interested in finding a element with rank k, we want to maintain filters a_i, b_i at each level of the *i*-sample such that for all elements x_j , if $a_i \leq x_j \leq b_i$ then $rank(x_j, P)$ is a contender for an element with rank k. More specifically, $2^i j \leq k \leq 2^i (i+j)$. Thus we want the smallest a_i such that $M_{ia} \geq k$; choosing $a_i = \lceil \frac{k}{2_i} \rceil - i$ suffices. Similarly we want the largest b_i such that $L_{ib} \leq k$; choosing $b_i = \lfloor \frac{k}{2_i} \rfloor$ suffices. So if m_i is the number of elements between a_i and b_i we can see that $m_{i+1} = O(\frac{m_i \log^2(n)}{s})$ where n is the original population size. Thus we can see that our choice in s from the last lecture is correct.

17.2 Coresets

We now switch to some geometric problems in the streaming setting. To do so we start with the notion of coresets via a specific problem (called minimum enclosing ball MEB). Roughly speaking, coresets of a set points is a much smaller (than original input) sample that preserves a lot of properties of the input. The ideas used in this section are similar to the previous two selection algorithms in terms of combining and sparsifying sets.

Definition 1 A metric space is a pair (χ, d) where χ is a non-empty set of points and $d : \chi \times \chi \to \mathbb{R}^{\geq 0}$ is a distance function satisfying

- 1. d(x, y) = d(y, x)
- 2. $d(x,y) = 0 \Leftrightarrow x = y$
- 3. $d(x,z) \leq d(x,y) + d(y,z), \forall x, y, z \in \chi$; meaning d satisfies the triangle inequality.

So, if χ is finite, we can think of this as a complete graph where the vertices are the elements of χ and the edges have edge weights corresponding to the distances between pairs of points (and thus the edge weights satisfy the triangle inequality). One example of a distance function would the the ℓ_p -norm; $d(x, y) = ||x - y||_p$.

For a set $P \subseteq \chi$ and $q \in \chi$. We define the function $cost(P,q) = \max_{p \in P} \{d(q,p)\}$; the maximum distance between q and a point in P.

Definition 2 Let $P \subseteq \chi$. A coreset $Q \subseteq P$ is an ϵ -coreset if $\forall y \in \chi$

$$(1 - \epsilon)cost(P, y) \le cost(Q, y) \le (1 + \epsilon)cost(P, y)$$

Generally, a coreset's size is much smaller than the size of the original set. These definitions hold in general, but for the rest of this lecture we will consider $\chi = \mathbb{R}^d$ and $d(x, y) = ||x - y||_2$ as the Euclidean distance.

17.2.1 Minimum Enclosing Ball and Offline Coreset

Definition 3 Let $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$. The minimum enclosing ball (MEB) of the set P is defined by the point $x \in \mathbb{R}^d$ which minimizes cost(P, x). The cost function is the radius of this MEB.

We will use MEB to design an offline coreset algorithm. We will then use this algorithm as a subpart of a streaming algorithm for finding a ϵ -coreset.

Lemma 2 Suppose B is a MEB of $P \subseteq \mathbb{R}^d$ with center c and radius r. Then any enclosed half-space that contains c also contains a point $x \in P$ such that d(x, c) = r.

Proof.

Suppose towards a contradiction that this is not the case. Let H be the half-space and \bar{H} be everything else. Clearly, if H contains no point at distance r, then \bar{H} must. But this means $\exists \delta$ small enough such that a point $c' \in H$ with $d(c, c') = \delta$ but c' is closer to the half-space separation. It can be seen that c' with radius r' is also a MEB for P, where r' < r. Below is an (exaggerated) illustration of this for d = 2.

Theorem 1 Given $P \subseteq \mathbb{R}_d$, $\exists \epsilon$ -coreset $S \subseteq P$ of size $2\epsilon^{-1}$. Equivalently, if r_P, r_S is the radius of a MEB of P, S respectively; then $\frac{1}{1+\epsilon}r_P \leq r_S \leq r_P$.

Proof. Consider the following algorithm:

MEB
$$\epsilon$$
-coreset(P)

- 1. Let $S_1 = \{p\}$ for any arbitrary point $p \in P$.
- 2. For $i \leftarrow 1$ to $T = 2\epsilon^{-1}$ do:
 - $c_i \leftarrow \text{center of } MEB(S_i).$
 - $p_i \leftarrow \arg \max_{p \in P} d(c_i, p)$

•
$$S_{i+1} = S_i \cup \{p_i\}$$

3. Return S_T

Clearly, the return set of this algorithm returns a set of size $2\epsilon^{-1}$ so we need only show that for $S = S_T$, that for r_P, r_S defined in the statement, $\frac{1}{1+\epsilon}r_P \leq r_S \leq r_P$. Since $S \subseteq P$, it is clear that $r_S \leq r_P$ thus we need only show the former inequality. Define the following variables:

- r_i as the radius of $MEB(S_i)$
- $\lambda_i = \frac{r_i}{r_P}$
- $\delta_i = \|c_i c_{i+1}\|$

First, we notice that $\forall i, \exists q \in P$ such that $d(c_i, q) \geq r_P$ (by definition of MEB). So, by the triangle inequality and our definitions we get that:

$$\lambda_i r_P = r_{i+1} \ge d(q, c_{i+1}) \ge d(q, c_i) - d(c_i, c_{i+1}) \ge r_P - \delta_i$$

So, if $\delta_i = 0$, then we are done. So consider $\delta_i > 0$. This means, $\exists p \in P$ such that $d(p, c_i) = r_i = \lambda_i r_P$. Thus since we are using euclidean distances:

$$r_{i+1} \ge d(c_{i+1}, p) = \sqrt{r_i^2 + \delta_i^2} = \sqrt{\lambda_i^2 r_P^2 + \delta_i^2}$$

This combined with the fact above implies that $r_{i+1} \ge \max\{r_P - \delta_i, \sqrt{\lambda_i^2 r_P^2 + \delta_i^2}\}$ which is minimized when $r_P - \delta_i = \sqrt{\lambda_i^2 r_P^2 + \delta_i^2}$. Solving for δ_i gives $\delta_i = \frac{1}{2}(1 - \lambda_i^2)r_P$. Substituting this δ_i into the first equation and solving gives us that $\lambda_{i+1} \ge \frac{1}{2}(1 + \lambda_i^2)$. Solving this recursion finally gives that $\lambda_i \ge 1 - \frac{1}{1 + i/2}$. Finally, to have $\lambda_T \ge 1 - \epsilon$ (for our desired result for r_S) it is enough to set $T = 2\epsilon^{-1}$.

Finally, without proof, we note that there is a way to build coresets of size $O(\frac{1}{\epsilon^{(d-1)/2}})$ which is an improvement for d = 2.

17.2.2 Streaming Model

Now we look at solving this problem in a streaming model. First, we consider the following remarks (without proof).

Remark 1 If Q, Q' are ϵ -coresets for P, P' respectively, then $Q \cup Q'$ is an ϵ -coreset for $P \cup P'$.

Remark 2 If R is an ϵ -coreset for Q and Q is an ϵ' -coreset for P then R is an $(\epsilon + \epsilon')$ -coreset for P.

So, if we split the input stream into chunks of size B, we can build a coreset for each chunk as leaves of a tree, and combine pairs of coresets using the above remarks until we have a single coreset for the whole stream. If the stream is of size m, then the tree would have a height of $\log \frac{m}{B}$. If we combine the coresets as soon as possible while building the tree, then we will need at most $O(\log m)$ coresets at any point in time. For the analysis below, let $A(\epsilon)$ be the space complexity of an ϵ -coreset. If we use our algorithm that was previously mentioned, $A(\epsilon) = O(\epsilon^{-1})$. We have two methods of getting coresets for an input stream:

- Method 1: At the first level of making the coresets, make δ -coresets (where $\delta = \frac{\epsilon}{\log m}$) and combine two coresets Q_1 and Q_2 by finding a δ -coreset for the set $Q_1 \cup Q_2$. Using the second remark, the final coreset of this algorithm will be an ϵ -coreset with a space complexity $O(A(\frac{\epsilon}{\log m})\log m)$.
- Method 2: At the first level of making the coresets, make ϵ -coresets and combine them by using the ϵ -coreset $Q_1 \cup Q_2$. By the first remark, the final coreset of this algorithm will be an ϵ -coreset with a space complexity $O(A(\epsilon) \log^2 m)$.

In both methods if we are using the algorithm that was presented we have an algorithm for obtaining an ϵ -coreset for a stream that uses $O(\epsilon^{-1} \log^2 m)$ space.

References

- AHV04 P. K. AGARWAL, S. HAR-PELED, AND K. R. VARADARAJAN, Approximating Extent Measures of Points. Journal of the ACM, 51(4):606635, 2004.
 - BC03 M. BĂDOIU AND K. L. CLARKSON, Smaller Core-sets for Balls. In SODA '03: Proc. of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.
- BHI02 M. BĂDOIU, S. HAR-PELED, AND P. INDYK, Approximate Clustering via Core-sets. In Proc. of the 34th Annual ACM-SIAM Symp. on Theory of Computing, 2002.
- MP80 J. I. MUNRO AND M. S. PATERSON, Selection and Sorting with Limited Storage. *Theoretical Computer Science*, 12(3):315-323, 1980.