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14.1 Matching

A graph M is said to be a matching if each vertex has a max degree 1, in other words no two edges have a
common end-point.

14.1.1 Problem

Given an unweighted or weighted graph (in streaming model) we want to find a maximum matching. There are
two types of the problem depending on the graph:

• Maximum Cardinality Matching (MCM): Find the matching with the largest size (in unweighted graphs).

• Maximum Weighted Matching (MWM): Find the matching with the maximum sum of weights (in weighted
graphs).

14.1.2 Simple Offline 2-approximation for MCM

In general, in the off-line setting, a simple 2-approximation for MCM is using the fact that any maximal matching
is a good approximation of the maximum matching. In the streaming model, we can convert it into a one-pass
algorithm that finds a maximal matching M̂ (a 2-approximation for the maximum matching) was proposed in
2005 by Feigenbaum, Kannan, McGregor, Suri, and Zhang [FKMSZ05]:

MCM

M ← ∅

For each edge e do
if M ∪ {e} is a matching
M ←M ∪ {e}

return M

This can be adapted to MWM through its parametrization.
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14.1.3 MWM

MWM

M ← ∅

For each edge e = (u, v) in the stream do
if M ∪ {e} is a matching item

M ←M ∪ {e}
else let C be the set of edges conflicting with e

if We > (1 + α)WC then
M ← (M − C) ∪ {e}

return M

We will show the following:

Theorem 1 This is a (3 + 2
√

2)-approximation for MWM in space O(n log n),
∼
O(n).

Here are some definitions we use through our analysis.

• We say edge e is born when we add it to M .

• We say it died (or was killed) when removed.

• Each dead edge has a killer.

• Survives if it stays in M until the end.

• We build a tree associated with killer/survivor relation.

For survived edge e, Te rooted at e has ≤ 2 children nodes, the ones that e killed when born. The subtrees of
the children nodes are defined recursively:

S = {survivors} and T (S) = ∪
eεS
{ edges of killer tree of e}.

Lemma 1 • W (T (S)) ≤ W (S)
α

• optimum (opt) ≤ (1 + α)(W (T (S)) + 2W (S))

Proof. Consider killer tree of one e ∈ S:

W (level i descendents of e) ≤W (level i− 1)

1 + α

≤ W (e)

(1 + α)i
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W (Te) ≤W (e)(
1

1 + α
+

1

(1 + α)2
+ ...)

=
W (e)

1 + α
(

1

1− 1
1+α

)

=
W (e)

1 + α− 1

=
W (e)

α

Let e∗1e
∗
2...e

∗
m, be the edges of an opt matching M∗ in the order they appear in the stream.

We define the following charging:

• If e∗i is born then charge W (e∗i ) to e∗i in S ∪ T (S)

• If e∗i is not born (because of conflicts):

– One conflict edge e: e ∈ S
∗ Charge W (e∗i ) to e

∗ W (e∗i ) ≤ (1 + α)W (e) (because it didn’t kill e)

– Two conflicting edges e1,e2:

∗ Charge e1: W (e∗i )
W (e1)

W (e1)+W (e2)

∗ Charge e2: W (e∗i )
W (e2)

W (e1)+W (e2)

∗ W (e∗i ) ≤ (1 + α)(W (e1) +W (e2))

• If an edge e is killed by e′ we transfer charge to the killer.

– W (e) ≤W (e′)

– We maintain that weight charged to an edge e is ≤ (1 + α)W (e)

• Edges e in S may have to absorb 2(1 + α)W (e) charge because of up to two conflicts with edges in M∗:

opt ≤(1 + α)(
W (S)

α
+ 2W (S))

=(
1

α
+ 3 + 2α)W (S)

Choose α = 1√
2
→ (3 + 2

√
2)-approximation.

14.2 Connectivity in dynamic (insert/delete) model

We revisit the problem of connectivity (or finding connected components) int he dynamic graph model where
edges are added/deleted in the stream. One can think of the following algorithm (in the off-line setting) to
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find connected components. We start with each vertex being a singleton component. At each iteration we pair
up the components that have an edge between them and merge them into one big super-node. We repeat this
until there are no edges left between the supernodes or there is only one supernode left. The super-nodes left
represent the connected components of the graph. If at each round the nodes that merge represent roughly
equal size components, then the size of each component doubles after each merger and hence we have O(log n)
iterations.

For each v ∈ V , let xv ∈ {−1, 0, 1}(
n
2):

xv(u,w) ∈ E =


1 if u = v, u < w

−1 if u = v, u > w

0 Otherwise

If S is the set of vertices in a super node, the non-zero entries of
∑
vεS

xv are exactly the edges comming out of

SvεS . The algorithm for connectivity in the dynamic model has the following structure. We keep sketches for

xvs. When we see an edge (u, v) we update xv(u, v) =

{
1 if u < v

−1 if u > v
(Similarly for xu(u, v)) When we have

deletion we do update with reverse sign.

So we have sketches for xvs. We can do `0 sampling; i.e. sample a random edge incident.

For a connected subgraph S let

xS =
∑
v∈S

xv

xS(u,v)


1 if uεS, v /∈ S, u < v

−1 if uεS, v /∈ S, u > v

0 Otherwise

Note that for (u, v), if u, v ∈ S then xu, xv will have different signs and cancel out each other in the sum.

By linearity of the sketches,

`0 sketch of S =
∑
vεS

(`0 − sketch of xv)

The algorithm maintains sketches for xvs. So the algorithm maintains `0-sketches (xv).

14.3 Estimation Algorithm

• Maintain connected components (super nodes) S1...Sn.

• For each Si sample an edge using `0 sampling.

• Update the connected components by combining if there is a sampled edge between them.

• Repeat until 1 connected component or no more edges.

Expected number of rounds is O(log n) and a total space of O(n polylog n).
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