In the previous lecture, we discussed various approaches to sampling, namely reservoir sampling and priority sampling. The lecture ended with the introduction to l_{0}-sampling and an algorithm for l_{0}-sampling. In this lecture, we will begin by analyzing the l_{0}-sampling algorithm from last lecture.

Let us recall, in the general l_{p}-sampling setting, we are given a non-zero vector $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ and we want a random element $r \in[n]$ such that

$$
\mathbb{P}[r=i]=\frac{\left|a_{i}\right|^{p}}{\sum_{i}\left|a_{i}\right|^{p}}
$$

11.1 Analysis of l_{0}-sampling

In the algorithm, we used a hash function $h:[n] \rightarrow\left[n^{3}\right]$ which is k-wise independent and chosen uniformly at random from a $O(s)$-universal hash family where $s=O\left(\max \left\{\log \frac{1}{\epsilon}, \log \frac{1}{\delta}\right\}\right)$. We also defined $a[j]$ by the following,

$$
a[j]_{i}= \begin{cases}a_{i}, & \text { if } h(i) \leq \frac{n^{3}}{2^{j}} \\ 0, & \text { otherwise }\end{cases}
$$

We must note the following,

- $a[0]$ is the same as a.
- $a[1]$ is a vector which has approximately half the coordinates of a while the rest are zero.
- $a[2]$ is a vector which has approximately quarter the coordinates of a while the rest are zero.

The algorithm gives the vector $a[j]$ as input to an s-sparse detection and recovery algorithm for $s=\log \left(\frac{1}{\delta}\right)$. We then choose the first vector for which the recovery succeeds and returns a random coordinate from the smallest j such that $a[j]$ is s-sparsse. We must also note that

$$
\begin{aligned}
N & =\|a\|_{0} \\
N_{j} & =\|a[j]\|_{0}
\end{aligned}
$$

We would like to have an estimate of the expected value in order to bound the probability using concentration inequalities later. Let j be such that

$$
\frac{s}{4} \leq \mathbb{E}\left[N_{j}\right] \leq \frac{s}{2}
$$

We wish to compute the probability of $1 \leq\left\|a_{j}\right\|_{0} \leq s$. Since we have an estimate of the expected value, we can use the Chernoff bound,

$$
\begin{aligned}
\mathbb{P}\left[\left|N_{j}-\mathbb{E}\left[N_{j}\right]\right| \geq r \mathbb{E}\left[N_{j}\right]\right] & \leq e^{\frac{-r^{2} \mathbb{E}\left[N_{j}\right]}{3}} \\
& \leq 2^{-\Omega(s)} \\
& \leq \delta \text { since } s=O\left(\log \frac{1}{\delta}\right)
\end{aligned}
$$

Hence, with high probability, $a[j]$ will be s-sparse. Suppose $k=O\left(\frac{1}{\epsilon}\right)$ and h is chosen uniformly at random from a k-universal hash family, then for any non-zero coordinate of j of vector a, we have

$$
\mathbb{P}\left[\arg \max _{i: a_{i} \neq 0} h(i)=j\right]=\frac{1 \pm \epsilon}{N}
$$

$11.2 \quad l_{2}$-sampling

We will now study the algorithm for l_{2}-sampling by A. Andoni, R. Krauthgamer and K. Onak in [AKO18]. Suppose we have a frequency vector $f=\left(f_{1}, \ldots, f_{n}\right)$ where $F_{2}=\sum_{i} f_{i}^{2}$ is the second moment. In the l_{2} sampling problem, we wish to sample $I \in[n]$ based on the following,

$$
\mathbb{P}[I=i]=(1 \pm \epsilon) \frac{f_{i}^{2}}{F_{2}}
$$

For simplicity, we will assume $F_{2}=1$. The algorithm is as follows,

l_{2}-sampling

1. For each i, let $u_{i} \in(0,1]$.
2. Let $w_{i}=\frac{1}{\sqrt{u_{i}}}$
3. Let $g_{i}=w_{i} f_{i}=\frac{f_{i}}{\sqrt{u_{i}}}$
4. Let $g=\left(g_{1}, \ldots, g_{n}\right)$.
5. Suppose there is some large threshold value t :
6. If there is a unique i such that $g_{i}^{2} \geq t$ (i.e., for all $j \neq i, g_{i}^{2}<t$),
7. Then return $\left(i, f_{i}\right)$.
8. Fail otherwise.

We will now calculate the probability of some $i \in[n]$ being returned. This would happen when

$$
\begin{aligned}
\mathbb{P}\left[g_{i}^{2} \geq t \bigwedge_{j \neq i} g_{j}^{2}<t\right] & =\mathbb{P}\left[g_{i}^{2} \geq t\right] \prod_{j \neq i} \mathbb{P}\left[g_{j}^{2}<t\right] \\
& =\mathbb{P}\left[u_{i} \leq \frac{f_{i}^{2}}{t}\right] \underbrace{\prod_{j \neq i} \mathbb{P}\left[u_{j}>\frac{f_{j}^{2}}{t}\right]}_{\text {very large }} \\
& \approx \frac{f_{i}^{2}}{t}
\end{aligned}
$$

Hence, the probability that some i is returned would be approximately be the sum of probability of each i

$$
\sum_{i} \frac{f_{i}^{2}}{t}=\frac{\sum_{i} f_{i}^{2}}{t}=\frac{F_{2}}{t}=\frac{1}{t}
$$

We used the fact that $F_{2}=1$ for the above inequality. In order to boost the probability, we use the standard trick of boosting the probability by running it $O\left(t \log \frac{1}{\delta}\right)$ to have a probability of δ for some element to be
returned.
Next, we will look at another l_{2}-sampling algorithm, called l_{2}-precision sampling.

$11.3 \quad l_{2}$-precision sampling

We can describe the algorithm as follows,

l_{2}-precision sampling

1. Let $u_{1}, \ldots, u_{n} \in\left[\frac{1}{n^{2}}, 1\right]$
2. Let D be a CountSketch for $g=\left(g_{1}, \ldots, g_{n}\right)$.
3. Given (j, c), we feed $\left(j, \frac{c}{\sqrt{u_{j}}}\right)$ to our CountSketch D.
4. Let \hat{g}_{j} be an estimate for g_{j} from D.
5. Let $\hat{f}_{j}=\hat{g}_{j} \sqrt{u_{j}}$.
6.

$$
X_{j}= \begin{cases}1, & \text { if } \hat{g}_{j}^{2}=\frac{\hat{g}_{j}^{2}}{u_{j}} \geq \frac{4}{e} \\ 0, & \text { otherwise }\end{cases}
$$

7. If there exists a unique j with $X_{j}=1$, then return $\left(j, f_{j}^{2}\right)$.

Lemma 1 Let $F_{2}=\sum_{j} f_{j}^{2}$ and $F_{2}(f)=\sum_{i} g_{i}^{2}$. Suppose $F_{2}=1$, then $F_{2}(g) \leq O(\log n)$.

Proof.

$$
\begin{aligned}
F_{2}(g) & =\sum_{i} g_{i}^{2} \\
& =\sum_{i} \frac{f_{i}^{2}}{u_{i}} \\
& \leq F_{2} \int_{\frac{1}{n^{2}}}^{1} \frac{1}{u} \cdot d u \\
& =F_{2} \frac{\ln n^{2}}{1-\frac{1}{n^{2}}} \\
& \leq 5 \log n=O(\log n)
\end{aligned}
$$

Suppose we use CountSketch with parameters (k, d) for g_{i} where $k=O\left(\frac{1}{\epsilon}\right)$ and $d=O(\log n)$. We can write \hat{g}_{j}^{2} as the following,

$$
\hat{g}_{j}^{2}=g_{j}^{2}+Z_{j}^{2}
$$

where Z_{j} was the sum of contribution of $i \neq j$ where their hash functions collide. We showed $\mathbb{E}\left[Z_{j}\right] \leq \frac{F_{2}(g)}{k}$ and using Markov's inequality, we get

$$
\mathbb{P}\left[Z_{j}^{2}>\frac{3 F_{2}(g)}{k}\right]<\frac{1}{3}
$$

In this case, with probability greater than $\frac{2}{3}$, we have $Z_{j}^{2}<3 \epsilon F_{2}(g)$. We will use the fact $1 \pm \epsilon \approx e^{ \pm \epsilon}$ many times in our analysis.

- Case 1: When $\left|g_{j}\right| \geq \frac{2}{\epsilon}$

This would imply

$$
\hat{g}_{j}^{2}=\left(g_{j}+Z_{j}\right)^{2}=g_{j}^{2}+\underbrace{2 Z_{j} g_{j}+Z_{j}^{2}}_{\text {small }}
$$

The latter term is small because $\mathbb{E}\left[Z_{j}\right] \leq \frac{F_{2}(g)}{k}$ and $k=O\left(\frac{\log n}{\epsilon}\right)$.

- Case 2: When $\left|g_{j}\right|>\frac{2}{3}$

This would imply

$$
\begin{aligned}
\left|\hat{g}_{j}^{2}-g_{j}^{2}\right| & =\left(g_{j}+Z_{j}\right)^{2}-g_{j}^{2} \\
& =Z_{j}^{2}+2 g_{j} Z_{j} \\
& \leq Z_{j}^{2}\left(1+\frac{4}{\epsilon}\right) \\
& =6 \epsilon Z_{j}^{2}
\end{aligned}
$$

Hence, with probability $\frac{2}{3}$, we have that $\left|\hat{g}_{j}^{2}-g_{j}^{2}\right|<\frac{18 F_{2}(g)}{\epsilon k}$. Suppose we choose $k=O\left(\frac{\log n}{\epsilon}\right)$, then with probability greater than $1-\left(\frac{1}{10}+\frac{1}{3}\right)$, we have $F_{2}(g) \leq 50 \log n$ and $Z_{j} \leq \frac{3 F_{2}(g)}{k}$.

Suppose we have

$$
\hat{g}_{j}^{2}=(1 \pm \epsilon) g_{j}^{2} \pm 1 \Longrightarrow f_{j}^{2}=(1 \pm \epsilon) f_{j}^{2} \pm u_{j}
$$

Suppose $X_{j}=1$, that means $u_{j} \ll \frac{\epsilon \hat{f}_{j}^{2}}{4}$ which implies

$$
\begin{aligned}
\hat{f}_{j}^{2} & =(1 \pm \epsilon) f_{j}^{2} \pm \frac{\epsilon \hat{f}_{j}^{2}}{4} \\
\Longrightarrow \hat{f}_{j}^{2} & =(1 \pm O(\epsilon)) f_{j}^{2}
\end{aligned}
$$

References

AKO18 A. Andoni, R. Krauthgamer and K. Onak, Streaming Algorithms via Precision Sampling. IEEE 52nd Annual Symposium on Foundations of Computer Science, Pages 363-372, 2011.

