CMPUT 675: Algorithms for Streaming and Big Data

Lecture 11 (Oct 9, 2019): l_0 -sampling and l_2 -sampling

Lecturer: Mohammad R. Salavatipour

In the previous lecture, we discussed various approaches to sampling, namely reservoir sampling and priority sampling. The lecture ended with the introduction to l_0 -sampling and an algorithm for l_0 -sampling. In this lecture, we will begin by analyzing the l_0 -sampling algorithm from last lecture.

Let us recall, in the general l_p -sampling setting, we are given a non-zero vector $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ and we want a random element $r \in [n]$ such that

$$\mathbb{P}[r=i] = \frac{|a_i|^p}{\sum_i |a_i|^p}$$

11.1 Analysis of l_0 -sampling

In the algorithm, we used a hash function $h : [n] \to [n^3]$ which is k-wise independent and chosen uniformly at random from a O(s)-universal hash family where $s = O\left(\max\{\log \frac{1}{\epsilon}, \log \frac{1}{\delta}\}\right)$. We also defined a[j] by the following,

$$a[j]_i = \begin{cases} a_i, & \text{if } h(i) \le \frac{n^3}{2^j} \\ 0, & \text{otherwise} \end{cases}$$

We must note the following,

- a[0] is the same as a.
- a[1] is a vector which has approximately half the coordinates of a while the rest are zero.
- a[2] is a vector which has approximately quarter the coordinates of a while the rest are zero.

The algorithm gives the vector a[j] as input to an s-sparse detection and recovery algorithm for $s = \log(\frac{1}{\delta})$. We then choose the first vector for which the recovery succeeds and returns a random coordinate from the smallest j such that a[j] is s-sparse. We must also note that

$$N = ||a||_0$$
$$N_j = ||a[j]||_0$$

We would like to have an estimate of the expected value in order to bound the probability using concentration inequalities later. Let j be such that

$$\frac{s}{4} \le \mathbb{E}[N_j] \le \frac{s}{2}$$

We wish to compute the probability of $1 \le ||a_j||_0 \le s$. Since we have an estimate of the expected value, we can use the Chernoff bound,

$$\begin{aligned} \mathbb{P}[|N_j - \mathbb{E}[N_j]| \geq r \mathbb{E}[N_j]] &\leq e^{\frac{-r^2 \mathbb{E}[N_j]}{3}} \\ &\leq 2^{-\Omega(s)} \\ &\leq \delta \text{ since } s = O\left(\log \frac{1}{\delta}\right) \end{aligned}$$

Fall 2019

Scribe: Aditya Jayaprakash

Hence, with high probability, a[j] will be s-sparse. Suppose $k = O\left(\frac{1}{\epsilon}\right)$ and h is chosen uniformly at random from a k-universal hash family, then for any non-zero coordinate of j of vector a, we have

$$\mathbb{P}\left[\arg\max_{i:a_i\neq 0} h(i) = j\right] = \frac{1\pm\epsilon}{N}$$

11.2 l_2 -sampling

We will now study the algorithm for l_2 -sampling by A. Andoni, R. Krauthgamer and K. Onak in [AKO18]. Suppose we have a frequency vector $f = (f_1, \ldots, f_n)$ where $F_2 = \sum_i f_i^2$ is the second moment. In the l_2 sampling problem, we wish to sample $I \in [n]$ based on the following,

$$\mathbb{P}[I=i] = (1 \pm \epsilon) \frac{f_i^2}{F_2}$$

For simplicity, we will assume $F_2 = 1$. The algorithm is as follows,

l_2 -sampling

- 1. For each i, let $u_i \in (0, 1]$.
- 2. Let $w_i = \frac{1}{\sqrt{u_i}}$
- 3. Let $g_i = w_i f_i = \frac{f_i}{\sqrt{u_i}}$
- 4. Let $g = (g_1, \ldots, g_n)$.
- 5. Suppose there is some large threshold value t:
- 6. If there is a unique *i* such that $g_i^2 \ge t$ (i.e., for all $j \ne i$, $g_i^2 < t$),
- 7. Then return (i, f_i) .
- 8. Fail otherwise.

We will now calculate the probability of some $i \in [n]$ being returned. This would happen when

$$\mathbb{P}\left[g_{i}^{2} \geq t \bigwedge_{j \neq i} g_{j}^{2} < t\right] = \mathbb{P}\left[g_{i}^{2} \geq t\right] \prod_{j \neq i} \mathbb{P}\left[g_{j}^{2} < t\right]$$
$$= \mathbb{P}\left[u_{i} \leq \frac{f_{i}^{2}}{t}\right] \underbrace{\prod_{j \neq i} \mathbb{P}\left[u_{j} > \frac{f_{j}^{2}}{t}\right]}_{\text{very large}}$$
$$\approx \frac{f_{i}^{2}}{t}$$

Hence, the probability that some i is returned would be approximately be the sum of probability of each i

$$\sum_{i} \frac{f_i^2}{t} = \frac{\sum_{i} f_i^2}{t} = \frac{F_2}{t} = \frac{1}{t}$$

We used the fact that $F_2 = 1$ for the above inequality. In order to boost the probability, we use the standard trick of boosting the probability by running it $O(t \log \frac{1}{\delta})$ to have a probability of δ for some element to be

returned.

Next, we will look at another l_2 -sampling algorithm, called l_2 -precision sampling.

11.3 *l*₂-precision sampling

We can describe the algorithm as follows,

l_2 -precision sampling

1. Let $u_1, \ldots, u_n \in \left[\frac{1}{n^2}, 1\right]$ 2. Let D be a CountSketch for $g = (g_1, \ldots, g_n)$. 3. Given (j, c), we feed $\left(j, \frac{c}{\sqrt{u_j}}\right)$ to our CountSketch D. 4. Let \hat{g}_j be an estimate for g_j from D. 5. Let $\hat{f}_j = \hat{g}_j \sqrt{u_j}$. 6. $X_j = \begin{cases} 1, & \text{if } \hat{g}_j^2 = \frac{\hat{g}_j^2}{u_j} \ge \frac{4}{e} \\ 0, & \text{otherwise} \end{cases}$

7. If there exists a unique j with $X_j = 1$, then return (j, f_j^2) .

Lemma 1 Let $F_2 = \sum_j f_j^2$ and $F_2(f) = \sum_i g_i^2$. Suppose $F_2 = 1$, then $F_2(g) \le O(\log n)$.

Proof.

$$F_2(g) = \sum_i g_i^2$$

$$= \sum_i \frac{f_i^2}{u_i}$$

$$\leq F_2 \int_{\frac{1}{n^2}}^1 \frac{1}{u} \cdot du$$

$$= F_2 \frac{\ln n^2}{1 - \frac{1}{n^2}}$$

$$\leq 5 \log n = O(\log n)$$

Suppose we use CountSketch with parameters (k, d) for g_i where $k = O\left(\frac{1}{\epsilon}\right)$ and $d = O(\log n)$. We can write \hat{g}_j^2 as the following,

$$\hat{g}_j^2 = g_j^2 + Z_j^2$$

where Z_j was the sum of contribution of $i \neq j$ where their hash functions collide. We showed $\mathbb{E}[Z_j] \leq \frac{F_2(g)}{k}$ and using Markov's inequality, we get

$$\mathbb{P}\bigg[Z_j^2 > \frac{3F_2(g)}{k}\bigg] < \frac{1}{3}$$

In this case, with probability greater than $\frac{2}{3}$, we have $Z_j^2 < 3\epsilon F_2(g)$. We will use the fact $1 \pm \epsilon \approx e^{\pm \epsilon}$ many times in our analysis.

• Case 1: When $|g_j| \ge \frac{2}{\epsilon}$

This would imply

$$\hat{g}_{j}^{2} = (g_{j} + Z_{j})^{2} = g_{j}^{2} + \underbrace{2Z_{j}g_{j} + Z_{j}^{2}}_{\text{small}}$$

The latter term is small because $\mathbb{E}[Z_j] \leq \frac{F_2(g)}{k}$ and $k = O\left(\frac{\log n}{\epsilon}\right)$.

• Case 2: When $|g_j| > \frac{2}{3}$

This would imply

$$\begin{aligned} |\hat{g}_{j}^{2} - g_{j}^{2}| &= (g_{j} + Z_{j})^{2} - g_{j}^{2} \\ &= Z_{j}^{2} + 2g_{j}Z_{j} \\ &\leq Z_{j}^{2} \left(1 + \frac{4}{\epsilon}\right) \\ &= 6\epsilon Z_{j}^{2} \end{aligned}$$

Hence, with probability $\frac{2}{3}$, we have that $|\hat{g}_j^2 - g_j^2| < \frac{18F_2(g)}{\epsilon k}$. Suppose we choose $k = O\left(\frac{\log n}{\epsilon}\right)$, then with probability greater than $1 - \left(\frac{1}{10} + \frac{1}{3}\right)$, we have $F_2(g) \leq 50 \log n$ and $Z_j \leq \frac{3F_2(g)}{k}$.

Suppose we have

$$\hat{g}_j^2 = (1 \pm \epsilon)g_j^2 \pm 1 \implies f_j^2 = (1 \pm \epsilon)f_j^2 \pm u_j$$

Suppose $X_j = 1$, that means $u_j << \frac{\epsilon \hat{f}_j^2}{4}$ which implies

$$\hat{f}_j^2 = (1 \pm \epsilon) f_j^2 \pm \frac{\epsilon \hat{f}_j^2}{4}$$
$$\implies \hat{f}_j^2 = (1 \pm O(\epsilon)) f_j^2$$

References

AKO18 A. ANDONI, R. KRAUTHGAMER AND K. ONAK, Streaming Algorithms via Precision Sampling. *IEEE* 52nd Annual Symposium on Foundations of Computer Science, Pages 363-372, 2011.