
CMPUT 675: Algorithms for Streaming and Big Data Fall 2019

Lecture 1 (Sep 4, 2019): Introduction, background
Lecturer: Mohammad R. Salavatipour Scribe: Mohammad R. Salavatipour

1.1 Introduction

There is huge growth in data gathering and hence more demand for processing the data to extract useful
information from the raw data in various applications. The goal of this course is to learn some of the tools and
techniques to design efficient and fast algorithms that can extract useful information from raw data. Typically,
these algorithms have to run fast (sometimes sublinear time) and often work with much smaller space than the
data can possibly be stored. Below is a short list of topics we try to cover in this course

Streaming: There are situations when the data comes as a stream which is too large to be stored or processed
later. We have only one pass (or sometimes a few passes) over the data and have to make decisions as the
data comes.

sketching/sampling: the goal is to have a compressed form of data from which we can still answer queries
and extract useful information.

Dimensionality reduction: In many applications data comes with very high dimensions (e.g. medical appli-
cations, spam filtering, etc). Designing algorithms to mange high dimension data is difficult. One goal is to
reduce the dimension (e.g. via projection) while preserving (approximately) relevant structure/geometry
of the problem.

property testing: Checking quickly with sufficiently high probability whether a given object has certain
properties (e.g. if the result of a matrix computation is correct, if a large graph has certain graph
properties, if a proof is valid, etc).

Sparse Fourier transform: There are old algorithms to compute discrete Fourier transform of a sequence
of length n in time O(n log n). This has various applications (in signal processing, multiplication of large
integers, etc). Sparse Fourier Transform is an algorithm to compute the DFT when the output is k-sparse
in time O(k log n).

Approximate counting: Counting the number of objects with certain properties among a very large set (e.g.
number of solutions to an equation, or the number of distinct items in a sequence, etc).

Below we do a quick overview of the basic probability background we use throughout the course.

1.2 Background on Probability

Most of the algorithms we discuss are randomized and heavily rely on basic tools from probability theory for
their analysis. Let Ω be a discrete probability space. A probability function Pr : Ω → [0, 1] has the property
that

∑
x∈Ω Pr(x) = 1. A subset A ⊂ Ω is called an event. We define Pr(A) =

∑
x∈A Pr(x). We say two events

A,B ⊆ Ω are independent if Pr(A ∩ B) = Pr(A) · Pr(B). A random variable is a function X : Ω → R. The
expected value of X, denoted by E[X], is defined as E[X] =

∑
i∈Ω i · Pr(X = i).

1-1

1-2 Lecture 1: Introduction, background

Lemma 1 E[X + Y] = E[X] + E[Y] and for any constant c: E[cX] = cE[X].

Two random variables X,Y are independent if ∀x, y ∈ R : Pr[X = x ∧ Y = y] = Pr[X = x] ∧ Pr[Y = y].

Lemma 2 If X,Y are independent then E[XY] = E[X]E[Y].

Variance of a random variable X is defined as Var[X] = E[(X − E[X])2] = σ2
X and σX is called standard

deviation.

Theorem 1 (Markov’s inequality) Let X be a non-negative random variable. Then for all a > 0: Pr[X ≥
a] ≤ E[X]

a . Alternatively Pr[X ≥ aE[X]] ≤ 1
a .

Using Markov’s inequality to bound deviation from the mean is called first moment method.

Theorem 2 (Chebyshev’s inequality) Let X be a random variable and t > 0. Then Pr[|X − E[X]| > t ≤
Var[X]
t2 . Alternatively Pr[|X − E[X]| > tσX] ≤ 1

t2 .

As an example, consider a random walk on the integers that starts at origin (zero) and at every step with
probably 1

2 it moves one step to left or right uniformly randomly. After n steps, how far from 0 we have
traveled? Let

Xi =

{
1 moved right at step i
−1 moved left at step i

Let Yn be the position at step n. Then Yn =
∑n
i=1Xi, E[Yn] = 0 and Var[Yn] = n. Therefore, using Chebyshev’s

inequality Pr[|Yn| ≥ t
√
n] ≤ 1

t2 .

Chernoff-Hoeffding: Chernoff bound is a very powerful bound giving exponentially decreasing bound on the
tails of distributions. It can be applied to bound deviation from the mean for “independent” random variables.
It can be derived using Markov’s inequality.

Theorem 3 (Chernoff) Let X1, . . . , Xn be independent binary (Poisson) random variables where Pr[Xi] = pi
and let X =

∑
iXi and µ = E[X]. Then

• For any δ > 0: Pr[X ≥ (1 + δ)µ] <
(

eδ

(1+δ)(1+δ)

)µ
.

• For any 0 < δ ≤ 1: Pr[X ≥ (1 + δ)µ] ≤ eµδ2/3

• For R ≥ 6µ: Pr[X ≥ R] ≤ 2−R.

Although Chernoff bound gives very powerful bounds it has limited applications to independent variables. There
are stronger tools that can be applied to show concentration for settings with limited dependencies.

Azuma’s inequality Let X be a random variable determined by n trials X1, . . . , Xn such that for all i and
any two possible sequences of outcomes x1, . . . , xi and x1, . . . , xi−1, x

′
i:

|E[X|X1 = x1, . . . , Xi = xi]− E[X|X1 = x1, . . . , Xi−1 = xi−1, Xi = x′i] ≤ ci

for constants ci then Pr[|X − E[X]| > t] ≤ 2e−t
2/(2

∑
i c

2
i).

Lecture 1: Introduction, background 1-3

1.3 Approximate counting of events

We start with a simple problem of (approximately) counting the number of events. Suppose we want to design
an algorithm that monitors a long sequence of events and the goal is to have an approximate number of the
events at any given time. Clearly if we have had n events we can keep a counter using O(log n) bits. It’s not
difficult to show that any deterministic exact algorithm needs this much space.

We can however keep an approximate count using much less space, as little as O(log log n) bits. To be more
precise, suppose we want to have an estimate ñ for n such that ñ = (1± ε)n and Pr[|ñ−n| > εn] < δ for a given
δ. We call this an (ε, δ)-estimator. Here we describe Morris algorithm, that keeps a counter for log n instead of
n; so only O(log log n) bits of space are required.

Morris approximate counting

1. X ← 0

2. For each new even increment X with probability 1
2X

3. return ñ = 2X − 1.

Let Xn be the random variable representing the value of X after n steps and let Yn = 2Xn .

Lemma 3 E[Yn] = n+ 1

Proof. We use induction on n. The base case of n = 0 is easy. For induction step, assume it is true for Yn.
Then:

E[Yn+1 =
∑
i=0

Pr[Xn = i]E[2Xn+1 |Xn = i]

=
∑
i=0

Pr[Xn = i]

(
2i(1− 1

2i
) +

1

2i
· 2i+1

)
=

∑
i=0

Pr[Xn = i]2i +
∑
i=0

Pr[Xn = i]

= E[Yn] + 1

= (n+ 1) + 1.

Thus, the output ñ = 2X − 1 is an estimate for n (in expectation). Also, since E[Yn] = n + 1, it implies that
E[Xn] = log2(n+ 1) and so the expected number of bits used after n steps is O(log log n).

Lemma 4 E[Y 2
n] = 3

2n
2 + 3

2n+ 1 and Var[Yn] = n(n−1)
2 .

Proof. Again we use induction on n. Base case of n = 0 is easy to check. For induction step, assuming that
the statement is true for Yn:

1-4 Lecture 1: Introduction, background

E[Y 2
n+1] =

∑
i=0

22i Pr[Xn+1 = i]

=
∑
i=0

22i

(
Pr[Xn = i](1− 1

2i
) + Pr[Xn = i− 1]

1

2i−1

)
=

∑
i=0

22i Pr[Xn = i] +
∑
i=0

(−2i Pr[Xn = i− 1] + 4× 2i−1 Pr[Xn = i− 1])

= E[Y 2
n] + 3E[Yn]

=
3

2
n2 +

3

2
n+ 1 + 3(n+ 1)

=
3

2
(n+ 1)2 +

3

2
(n+ 1) + 1.

Also Var[Yn] = E[Y 2
n]− E[Yn]2 = n(n−1)

2 .

Thus, using this lemma and Chebyshev’s inequality:

Pr[|ñ− n| > εn] <
1

(εn)2
· n(n− 1)

2
' 1

2ε2

But this is useless for small values of ε. So we need to boost the success probability. We would like, given
ε, δ > 0, have a bound of the form Pr[|ñ− n| > εn] ≤ δ using O(log log n) bits.

1.3.1 Morris+: Using average to boost probability

Suppose we run r parallel copies of Morris algorithm and find values ñi for 1 ≤ i ≤ r and then let ñ = 1
r

∑r
i=1 ñi.

Since each ñi is an estimator for n then

Pr[|ñ− n| > εn] ≤ 1

2rε2
< δ

if we choose r > 1
2ε2δ . The amount of space used will be O(log log n/(ε2δ). In particular, if we choose r > 2

ε2

then we get Pr[|tilden− n| > εn] < 1
4 .

1.3.2 Morris++: Using Median to boost probability

We can do even better to boost success probability: instead of using average we use the median. More specifically,
run ` = c log 1

δ parallel copies of Morris+, for some large constant c. Suppose we get estimators Z1, . . . , Z` and
let ñ be the median of them. Note that by the arguments for Morris+ Pr[|Zi − n| > εn] < 1

4 for each i. Thus,
if we define a 0/1 random variable Yi = 1 if |Zi − n| > εn then Yi’s are independent and Pr[Yi = 1] < 1

4 and

E[
∑
i Yi] < `/4. We will have |ñ− n| > εn only if at least `

2 of the Zi’s are larger than n by εn. Using Chernoff
bound:

Pr[|ñ− n| > εn] ≤ Pr[|
∑
i

Yi − E[
∑
i

Yi]| >
`

4
] < (

e

4
)`/4 < δ

for ` = c log 1
δ for large constant c. Also, the space complexity will be O(ε−2 log 1

δ log log(nεδ)).

Lecture 1: Introduction, background 1-5

References

Mor787 R. Morris, Counting large numbers of events in small registers. Commun. ACM, 21(10):840-842, 1978.
Matrix multiplication via arithmetic progressions,

