Lecture 8 (Feb 1, 2018):Local Search for k-Median

Scribe: Based on older notes

$8.1 k$-median problem

k-median is an important clustering problem that has similarities to both k-center and facility location problem. An instance of this problem is similar to k-center: given a metric $d(.,$.$) and a integer k$. We have a set F of facilities/centres and the goal is to select a set $F^{\prime} \subseteq F$ with $\left|F^{\prime}\right|=k$ minimizing the sum of distances of all the points to the nearest centre: $\min \sum_{j} d\left(j, F^{\prime}\right)=\operatorname{kmed}\left(F^{\prime}\right)$.

Without loss of generality, we can assume that $\left|F^{\prime}\right|=k$. As in the k-center problem, we assume that the distance matrix is symmetric, satisfies triangle inequality, and has zeros on the diagonal. We present a local search algorithm for k-median problem with good approximation ratio. For every subset $F^{\prime} \subseteq F$ we use $\operatorname{kmed}\left(F^{\prime}\right)$ to denote the cost of the solution if set F^{\prime} is chosen.

Local search algorithm

1. Start from an arbitrary F^{\prime} with $\left|F^{\prime}\right|=k$
2. On each iteration see see if swapping a facility in F^{\prime} with one in $F-F^{\prime}$ improves the solution
3. Iterate until no single swap yields a better solution

Figure 8.1: Local search algorithm for k-median problem

Theorem 8.1 If F^{\prime} is a local optimum and F^{*} is a global optimum, then $\operatorname{kmed}\left(F^{\prime}\right) \leq 5 \operatorname{kmed}\left(F^{*}\right)$

Proof: Our proof is based on "Simpler Analyses of Local Search Algorithms for Facility Location" by Gupta and Tangwongsan (arXiv:0809.255). The proof will focus on constructing a set of special swaps S. These swaps will all be constructed by swapping into the solution location i^{*} in F^{*} and swapping out of the solution one location i^{\prime} in F^{\prime}. Each $i^{*} \in S$ will participate in exactly one of these k swaps, and each $i^{\prime} \in F^{\prime}$ will participate in at most 2 of these k swaps. We will allow the possibility that $i^{*}=i^{\prime}$, and hence the swap move is degenerate, but clearly such a "change" would also not improve the objective function of the current solution, even if we change the corresponding assignment. Let $\phi: F^{*} \rightarrow F$ be a mapping that maps each $f^{*} \in F^{*}$ to the nearest facility in F, i.e. $d\left(f^{*}, \phi\left(f^{*}\right)\right) \leq d\left(f^{*}, f\right)$ for all $f \in F^{\prime}$.

Let $R \subseteq F^{\prime}$ be those that have at most one $f^{*} \in F^{*}$ mapped to them. Now we define a set of k pairs of potential swaps: $S=\left\{\left(v, f^{*}\right) \subseteq R \times F^{*}\right\}$ such that:

1. $\forall f^{*} \in F^{*}$, it appears in exactly one pair $\left(v, f^{*}\right) \in S$.
2. each node $r \in R$ with $\phi^{-1}(r)=$ appears in at most two swaps.
3. each nodr $r \in R$ with $\phi^{-1}(r)=f^{*}$ appears only in one swap.

Figure 8.2: An example of mapping $\phi: F^{*} \rightarrow F$

How to build this set S ? for each $r \in R$ with in-degree 1 we add pairs $\left(r, \phi^{-1}(r)\right)$ to S. Let F_{1}^{*} be those of F^{*} that are matched this way. Other facilities in R have in-degree zero; let us call this set R_{0}. Note that

$$
\left|F^{*} \backslash F_{1}\right| \leq 2\left|R_{0}\right|
$$

Now we can add other pairs by arbitrarily matching each node of R_{0} with at most two in $F^{*} \backslash F_{1}^{*}$.
Observation: For any pair $\left(r, f^{*}\right) \in S$ and $\tilde{f}^{*} \in F^{*}$ with $\tilde{f}^{*} \neq f: \phi\left(\tilde{f}^{*}\right) \neq r$.
We use the fact that none of these potential swaps (in S) are improving to derive a bound on the cost of local optimum. Suppose that $\sigma: D \rightarrow F^{\prime}$ and $\sigma^{*}: D \rightarrow F^{*}$ are mappings of clients to facilities in the local optimum and global optimum, respectively. For each $j \in D$, let $O_{j}=d\left(j, F^{*}\right)=d\left(j, \sigma^{*}(j)\right)$ be the cost of connecting j in the optimum solution and $A_{j}=d\left(j, F^{\prime}\right)=d(j, \sigma(j))$ be its cost in the local optimum. We use $N^{*}\left(f^{*}\right)=\left\{j \mid \sigma^{*}(j)=f^{*}, f^{*} \in F^{*}\right\}$ to denote those assigned to f^{*} in the optimum solution and $N(f)=\left\{j \mid \sigma(j)=f, f \in F^{\prime}\right\}$ to denote those assigned to f in the local optimum.

Lemma 8.2 For each $\operatorname{swap}\left(r, f^{*}\right) \in S$:

$$
\operatorname{kmed}\left(F^{\prime}+f^{*}-r\right)-\operatorname{kmed}\left(F^{\prime}\right) \leq \sum_{j \in N^{*}\left(f^{*}\right)}\left(O_{j}-A_{j}\right)+\sum_{j \in N(r)} 2 O_{j}
$$

Proof: Suppose we do the swap $\left(r, f^{*}\right)$ and let's see how much the cost increases (note that since we are at a local optimum, this must be the case). We can upper bound this by giving a specific assignment of clients to facilities. Clearly the optimum assignment of clients to facilities cannot cost more than this:

- each client of $N^{*}\left(f^{*}\right)$ is assigned to f^{*}
- each client $j \in N(r) \backslash N^{*}\left(f^{*}\right)$ is assigned by the following rule: suppose $\tilde{f}^{*}=\sigma^{*}(j)$; we assign j to $\tilde{f}=\phi\left(\tilde{f}^{*}\right)$. Note that $\tilde{f} \neq r$.
- the assignment of all other clients remain unchanged.

For each $j \in N^{*}\left(f^{*}\right)$ the change in cost is exactly $O_{j}-A_{j}$; summing this over all $j \in N^{*}\left(f^{*}\right)$ gives the first term on the RHS. For $j \in N(r) \backslash N^{*}\left(f^{*}\right)$, the change in cost is:

$$
\begin{array}{rlr}
d(j, \tilde{f})-d(j, r) & \leq d\left(j, \tilde{f}^{*}\right)+d\left(\tilde{f}^{*}, \tilde{f}\right)-d(j, r) & \\
\text { using triangle inequality } \\
& \leq d\left(j, \tilde{f}^{*}\right)+d\left(\tilde{f}^{*}, r\right)-d(j, r) & \\
\text { since } \tilde{f} \text { is closest to } \tilde{f}^{*} \\
& \leq d\left(j, \tilde{f}^{*}\right)+d\left(j, \tilde{f}^{*}\right) & \\
& =2 O_{j} &
\end{array}
$$

Thus, summing up the total change for all these clients is at most: $\sum_{j \in N(r) \backslash N^{*}\left(f^{*}\right)} 2 O_{j} \leq \sum_{j \in N(r)} 2 O_{j}$.
Now we use this lemma and sum over all pairs $\left(r, f^{*}\right) \in S$. Note that each $f^{*} \in F^{*}$ appears exactly once and each $r \in R \subseteq F^{\prime}$ appears at most twice. Therefore:

$$
\begin{aligned}
\sum_{\left(r, f^{*}\right) \in S}\left(\operatorname{kmed}\left(F^{\prime}+f^{*}-r\right)-\operatorname{kmed}\left(F^{\prime}\right)\right) & \leq \sum_{f^{*} \in F^{*}} \sum_{j \in N^{*}\left(f^{*}\right)}\left(O_{j}-A_{j}\right)+2 \sum_{r \in R} \sum_{j \in N(r)} 2 O_{j} \\
& \leq \operatorname{kmed}\left(F^{*}\right)-\operatorname{kmed}\left(F^{\prime}\right)+4 \operatorname{kmed}\left(F^{*}\right)
\end{aligned}
$$

This implies that $\operatorname{cost}\left(F^{\prime}\right) \leq 5 \operatorname{cost}\left(F^{*}\right)$.

Note that the running time of this algorithm is not necessarily polynomial. To get polynomial time algorithm we only consider swaps which improve the cost by a factor of at least $(1+\delta)$ for some $\delta>0$. So when the algorithm stops we are in an almost locally optimum solution, i.e. each potential swap can only improve by a factor of smaller than $1+\delta$. Then the statement of lemma 8.2 would change to:

$$
\operatorname{kmed}\left(F^{\prime}+f^{*}-r\right)-(1-\delta) \operatorname{kmed}\left(F^{\prime}\right) \leq \sum_{j \in N^{*}\left(f^{*}\right)}\left(O_{j}-A_{j}\right)+\sum_{j \in N(r)} 2 O_{j}
$$

And then essentially the same analysis shows that the approximation ratio of the algorithm is at most $5(1+\delta)$ which is $5+\epsilon$ for sufficiently small $\epsilon>0$. Since at each step of the local search, the value of the solution goes down by at least a constant factor, with M being the total sum of all edges as an upper bound for the value of the initial solution, it takes at most $O\left(\log _{1+\delta} M\right)$ steps to arrive at a locally optimum solution which is polynomial.

Improvment using t-swaps: A similar anaylsis shows that if one considered all t-swaps (instead of just 1swaps) for a constant value of t at each step then the local search has a ratio of $3+\frac{2}{t}$. More specifically, the algorithm starts with an arbitrary set F^{\prime} of size k and in each iteration it checks whether swapping up to t centres in F^{\prime} with those in $F-F^{\prime}$ improves the solution or not.

Theorem 8.3 t-swap local search for k-median has approximation ratio $3+\frac{2}{t}$.

As before let σ, σ be the mapping of clients to centres in F^{\prime} and F^{*}, respectively. Similarly $\phi: F^{*} \rightarrow F^{\prime}$ maps each $f^{*} \in F^{*}$ to nearest centre in F^{\prime}. We give a partition of F^{\prime} to $\left\{R_{i}\right\}_{i=1}^{r}$ and F^{*} into $\left\{F_{i}^{*}\right\}_{i=1}^{r}$. For each element $f \in F^{\prime}$ let $\operatorname{deg}(f)=\left|\phi^{-1}(f)\right|$.
$i=1$
While there is an element $f \in F^{\prime}$ with degree >0 do

$$
\begin{aligned}
& R_{i} \leftarrow f+\text { any set of size } \operatorname{deg}(f)-1 \text { of elements of } F^{\prime} \text { with degree } 0 . \\
& F_{i}^{*} \leftarrow \phi^{-1}\left(R_{i}\right) \\
& F^{\prime} \leftarrow F-R_{i} ; F^{*} \leftarrow F^{*}-F_{i}^{*} ; i \leftarrow i+1 .
\end{aligned}
$$

Here are some facts about the sets R_{i} and F_{i}^{*} 's:

- $\left|R_{i}\right|=\left|F_{i}^{*}\right|$ for all i.
- Each set R_{i} has exactly one element with degree >0.
- For $j \in R_{i}$, if $\sigma^{*}(j) \notin F_{i}^{*}$ then $\phi\left(\sigma^{*}(j)\right) \notin R_{i}$.

Lemma 8.4 If $\left|R_{i}\right|=\left|F_{i}^{*}\right| \leq t$ then

$$
\operatorname{kmed}\left(\left(F^{\prime} \backslash R_{i}\right) \cup F_{i}^{*}\right)-\operatorname{kmed}\left(F^{\prime}\right) \leq \sum_{j \in N^{*}\left(F_{i}^{*}\right)}\left(O_{j}-A_{j}\right)+\sum_{j \in N\left(R_{i}\right)} 2 O_{j}
$$

The proof is similar to that of 8.2; assign each $j \in N^{*}\left(F_{i}^{*}\right)$ to $\sigma^{*}(j)$ and each $j \in N\left(R_{i}\right) \backslash N^{*}\left(F_{i}^{*}\right)$ to $\phi\left(\sigma^{*}(j)\right)$. For the case that $\left|R_{i}\right|=\left|F_{i}^{*}\right|=s>t$ let \tilde{R}_{i} be the degree 0 elements of R_{i}. We consider all pairs of swaps of the form $\left(r, f^{*}\right) \in \tilde{R}_{i} \times F_{i}^{*}$.

Lemma 8.5 If $\left|R_{i}\right|=\left|F_{i}^{*}\right|=s>t$ then:

$$
\frac{1}{s-1} \sum_{\left(r, f^{*}\right) \in \tilde{R_{i}} \times F_{i}^{*}}\left[\operatorname{kmed}\left(F^{\prime}+f^{*}-r\right)-\operatorname{kmed}\left(F^{\prime}\right)\right] \leq \sum_{j \in N^{*}\left(F_{i}^{*}\right)}\left(O_{j}-A_{j}\right)+\sum_{j \in N\left(R_{i}\right)} 2 O_{j} .
$$

Proof: Consider each swap $\left(r, f^{*}\right) \in \tilde{R}_{i} \times F_{i}^{*}$. An argument similar to proof of Lemma 8.2 shows: $\operatorname{kmed}\left(F^{\prime}-\right.$ $\left.r+f^{*}\right)-\operatorname{kmed}\left(F^{\prime}\right) \leq \sum_{j \in N^{*}\left(f^{*}\right)}\left(O_{j}-A_{j}\right)+\sum_{j \in N(r)} 2 O_{j}$. Now suppose $j \in N^{*}\left(F_{i}^{*}\right)$. Then any $f^{*} \in F_{i}^{*}$ appears in $s-1$ pairs of swaps in $\tilde{R}_{i} \times F_{i}^{*}$. So summing over all of these and noting the $\frac{1}{s-1}$ factor we get the first term on the right hand side. For $j \in N\left(\tilde{R}_{i}\right)$, it appears in s pairs of $R_{i} \times F_{i}^{*}$. Since $\frac{s}{s-1} \leq 1+\frac{1}{t}$, summing over all these we get the bound $\sum_{j \in N\left(R_{i}\right)} 2\left(1+\frac{1}{t}\right) O_{j}$.
Thus:

$$
\begin{array}{r}
0 \leq \sum_{i:\left|R_{i}\right| \leq t}\left(\operatorname{kmed}\left(\left(F^{\prime} \backslash R_{i}\right) \cup F_{i}^{*}\right)-\operatorname{kmed}\left(F^{\prime}\right)\right)+\sum_{i:\left|R_{i}\right|>t} \frac{1}{\left|R_{i}\right|-1} \sum_{\left(r, f^{*}\right) \in \tilde{R}_{i} \times F_{i}^{*}}\left(\operatorname{kmed}\left(F^{\prime}-r+f^{*}\right)-\operatorname{kmed}\left(F^{\prime}\right)\right) \\
\leq \sum_{i}\left(\sum_{j \in N^{*}\left(F_{i}^{*}\right)}\left(O_{j}-A_{j}\right)+\sum_{j \in N\left(R_{i}\right)} 2\left(1+\frac{1}{t}\right) O_{j}\right) \\
=\operatorname{kmed}\left(F^{*}\right)-\operatorname{kmed}\left(F^{\prime}\right)+2\left(1+\frac{1}{t}\right) \operatorname{kmed}\left(F^{*}\right)
\end{array}
$$

