CMPUT 675: Approximation Algorithms Winter 2018

Lecture 8 (Feb 1, 2018):Local Search for k-Median

Lecturer: Mohammad R. Salavatipour Scribe: Based on older notes

8.1 k-median problem

k-median is an important clustering problem that has similarities to both k-center and facility location problem.
An instance of this problem is similar to k-center: given a metric d(.,.) and a integer k. We have a set F' of
facilities/centres and the goal is to select a set F’ C F with |F’| = k minimizing the sum of distances of all the
points to the nearest centre: min) d(j, F') = kmed(F").

J

Without loss of generality, we can assume that |F’| = k. As in the k-center problem, we assume that the
distance matrix is symmetric, satisfies triangle inequality, and has zeros on the diagonal. We present a local
search algorithm for k-median problem with good approximation ratio. For every subset F/ C F we use
kmed(F’) to denote the cost of the solution if set F’ is chosen.

Local search algorithm

1. Start from an arbitrary F’ with |F'| =k
2. On each iteration see see if swapping a facility in F’ with one in F' — F’ improves the solution
3. Tterate until no single swap yields a better solution

Figure 8.1: Local search algorithm for k-median problem

Theorem 8.1 If F' is a local optimum and F* is a global optimum, then kmed(F’) < Skmed(F™*)

Proof: Our proof is based on “Simpler Analyses of Local Search Algorithms for Facility Location” by Gupta
and Tangwongsan (arXiv:0809.255). The proof will focus on constructing a set of special swaps S. These swaps
will all be constructed by swapping into the solution location * in F* and swapping out of the solution one
location 7’ in F’. Each ¢* € S will participate in exactly one of these k swaps, and each i’ € F’ will participate
in at most 2 of these k swaps. We will allow the possibility that * = 4/, and hence the swap move is degenerate,
but clearly such a “change” would also not improve the objective function of the current solution, even if we
change the corresponding assignment. Let ¢ : F* — F be a mapping that maps each f* € F* to the nearest
facility in F, i.e. d(f*,¢(f*)) < d(f*, f) for all f € F'.

Let R C F’ be those that have at most one f* € F* mapped to them. Now we define a set of k pairs of potential
swaps: S = {(v, f*) € R x F*} such that:

1. Vf* € F*, it appears in exactly one pair (v, f*) € S.

2. each node 7 € R with ¢~1(r) = appears in at most two swaps.

3. each nodr r € R with ¢~!(r) = f* appears only in one swap.

8-1

8-2 Lecture 8: Feb 1, 2018

"s.,___.x__ah

Fo

-
i
5

Figure 8.2: An example of mapping ¢ : F* — F

How to build this set S? for each r € R with in-degree 1 we add pairs (r,¢~1(r)) to S. Let F} be those of F*
that are matched this way. Other facilities in R have in-degree zero; let us call this set Rg. Note that

[F*\ Fi| < 2|Ro.

Now we can add other pairs by arbitrarily matching each node of Ry with at most two in F*\ F}.
Observation: For any pair (r, f*) € S and f* e F* with f* £ f: ng(f*) .

We use the fact that none of these potential swaps (in S) are improving to derive a bound on the cost of
local optimum. Suppose that ¢ : D — F’ and o* : D — F* are mappings of clients to facilities in the
local optimum and global optimum, respectively. For each j € D, let O; = d(j,F*) = d(j,0*(j)) be the
cost of connecting j in the optimum solution and A; = d(j, F’) = d(j,0(j)) be its cost in the local optimum.
We use N*(f*) = {jlo*(j) = f*, f* € F*} to denote those assigned to f* in the optimum solution and
N(f)={jlo(j) = f, f € F'} to denote those assigned to f in the local optimum.

Lemma 8.2 For each swap (r, f*) € S:

kmed(F' + f* —r) —kmed(F') < > (0; = A;)+ Y 20;.
JEN*(f*) JEN(r)

Proof: Suppose we do the swap (r, f*) and let’s see how much the cost increases (note that since we are at a
local optimum, this must be the case). We can upper bound this by giving a specific assignment of clients to
facilities. Clearly the optimum assignment of clients to facilities cannot cost more than this:

e each client of N*(f*) is assigned to f*

e cach client j € N(r) \ N*(f*) is assigned by the following rule: suppose f* = 0*(j); we assign j to
f=o(f*). Note that f # r.

e the assignment of all other clients remain unchanged.

For each j € N*(f*) the change in cost is exactly O; — A;; summing this over all j € N*(f*) gives the first
term on the RHS. For j € N(r) \ N*(f*), the change in cost is:

d(j, f) = d(j,r) < d(j, f*)+d(f*, f)—d(j,r) using triangle inequality
< d(, [*) +d(f*,r) —d(j,r) since f is closest to f*
< d(g, f)+dg, using triangle inequality

[\~

0,

Lecture 8: Feb 1, 2018 8-3

Thus, summing up the total change for all these clients is at most: ZjeN(r)\N*(f*) 20; < ZjEN(r) 20;. [|

Now we use this lemma and sum over all pairs (r, f*) € S. Note that each f* € F* appears exactly once and
each r € R C F’ appears at most twice. Therefore:

> (kmed(F' + f* —r) —kmed(F')) < > Y (0, —-A4;)+2> > 20

(r,fx)es fr*eF* jEN*(f*) r€ERFEN(r)
kmed(F™*) — kmed(F’) + 4kmed(F™*)

IN

This implies that cost(F’) < 5cost(F™).
|

Note that the running time of this algorithm is not necessarily polynomial. To get polynomial time algorithm
we only consider swaps which improve the cost by a factor of at least (1 +) for some § > 0. So when the
algorithm stops we are in an almost locally optimum solution, i.e. each potential swap can only improve by a
factor of smaller than 1 4+ d. Then the statement of lemma 8.2 would change to:

kmed(F' + f* —r) — (L -)kmed(F') < Y (0;—Aj)+ > 20;.

JEN*(f*) JEN(r)

And then essentially the same analysis shows that the approximation ratio of the algorithm is at most 5(1 4 9)
which is 5 + € for sufficiently small € > 0. Since at each step of the local search, the value of the solution
goes down by at least a constant factor, with M being the total sum of all edges as an upper bound for the
value of the initial solution, it takes at most O(log; s M) steps to arrive at a locally optimum solution which is
polynomial.

Improvment using ¢-swaps: A similar anaylsis shows that if one considered all ¢-swaps (instead of just 1-
swaps) for a constant value of ¢ at each step then the local search has a ratio of 3 + % More specifically, the
algorithm starts with an arbitrary set F’ of size k and in each iteration it checks whether swapping up to ¢
centres in F’ with those in F — F’ improves the solution or not.

Theorem 8.3 t-swap local search for k-median has approximation ratio 3 + %

As before let o, 0 be the mapping of clients to centres in F’ and F*, respectively. Similarly ¢ : F* — F’ maps
each f* € F* to nearest centre in F'. We give a partition of F’ to {R;}!_; and F* into {F;}!_,. For each
element f € F' let deg(f) = |67 (f)]|.

=1

While there is an element f € F’ with degree > 0 do
R; + f+ any set of size deg(f) — 1 of elements of F’ with degree 0.
F o7 (1)
F'« F—Ry F*« F*—Fyi+i+1

Here are some facts about the sets R; and F*’s:

o |R;| = |F}| for all i.

8-4 Lecture 8: Feb 1, 2018

e FEach set R; has exactly one element with degree > 0.
e For j € R;, if 0*(j) € F; then ¢(c*(j)) & R;.
Lemma 8.4 If |R;| = |F}| <t then

kmed((F'\ Ri)UF}) —kmed(F) < Y (0, —A)+ Y 20
JEN(F?) JEN(R:)

The proof is similar to that of 8.2; assign each j € N*(F}") to 0*(j) and each j € N(R;) \ N*(F}) to ¢(o™(j))-
For the case that |R;| = |[F| = s >t let R; be the degree 0 elements of R;. We consider all pairs of swaps of
the form (r, f*) € R; x F}.

Lemma 8.5 If |R;| = |F}| = s >t then:

1
— > [kmed(F + ff—r)—kmed(F)] < > (0;—A)+ > 205
(r,f*)ER; X F} JEN*(F}) JEN(R;)

Proof: Consider each swap (r, f*) € R; x F*. An argument similar to proof of Lemma 8.2 shows: kmed(F’ —
r+) — kmed(F') < 3 cne(4)(O5 — Aj) + X jen(r) 205 Now suppose j € N*(F;). Then any f* € Fy

appears in s — 1 pairs of swaps in R; x F*. So summing over all of these and noting the 5%1 factor we get the

first term on the right hand side. For j € N(R;), it appears in s pairs of R; X F*. Since —*7 < 1+ 1, summing

s—1 —
over all these we get the bound Y- yg,) 2(1 + $)0;. []
Thus:
1
0< (kmed((F'\ R;) UF;) — kmed(F")) + Y BT > (kmed(F' —r+ f*) — kmed(F"))
it R |<t iRy |>t (r,f*)ER; x F?

YO ©O-a)+ Y 214 4)0))

i JEN*(FY) JEN(R:)

1
= kmed(F*) — kmed(F") + 2(1 + ;)kmed(F*)

