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8.1 k-median problem

k-median is an important clustering problem that has similarities to both k-center and facility location problem.
An instance of this problem is similar to k-center: given a metric d(., .) and a integer k. We have a set F of
facilities/centres and the goal is to select a set F ′ ⊆ F with |F ′| = k minimizing the sum of distances of all the
points to the nearest centre: min

∑
j

d(j, F ′) = kmed(F ′).

Without loss of generality, we can assume that |F ′| = k. As in the k-center problem, we assume that the
distance matrix is symmetric, satisfies triangle inequality, and has zeros on the diagonal. We present a local
search algorithm for k-median problem with good approximation ratio. For every subset F ′ ⊆ F we use
kmed(F ′) to denote the cost of the solution if set F ′ is chosen.

Local search algorithm

1. Start from an arbitrary F ′ with |F ′| = k
2. On each iteration see see if swapping a facility in F ′ with one in F − F ′ improves the solution
3. Iterate until no single swap yields a better solution

Figure 8.1: Local search algorithm for k-median problem

Theorem 8.1 If F ′ is a local optimum and F ∗ is a global optimum, then kmed(F ′) ≤ 5kmed(F ∗)

Proof: Our proof is based on “Simpler Analyses of Local Search Algorithms for Facility Location” by Gupta
and Tangwongsan (arXiv:0809.255). The proof will focus on constructing a set of special swaps S. These swaps
will all be constructed by swapping into the solution location i∗ in F ∗ and swapping out of the solution one
location i′ in F ′. Each i∗ ∈ S will participate in exactly one of these k swaps, and each i′ ∈ F ′ will participate
in at most 2 of these k swaps. We will allow the possibility that i∗ = i′, and hence the swap move is degenerate,
but clearly such a “change” would also not improve the objective function of the current solution, even if we
change the corresponding assignment. Let φ : F ∗ → F be a mapping that maps each f∗ ∈ F ∗ to the nearest
facility in F , i.e. d(f∗, φ(f∗)) ≤ d(f∗, f) for all f ∈ F ′.

Let R ⊆ F ′ be those that have at most one f∗ ∈ F ∗ mapped to them. Now we define a set of k pairs of potential
swaps: S = {(v, f∗) ⊆ R× F ∗} such that:

1. ∀f∗ ∈ F ∗, it appears in exactly one pair (v, f∗) ∈ S.

2. each node r ∈ R with φ−1(r) = appears in at most two swaps.

3. each nodr r ∈ R with φ−1(r) = f∗ appears only in one swap.
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Figure 8.2: An example of mapping φ : F ∗ → F

How to build this set S? for each r ∈ R with in-degree 1 we add pairs (r, φ−1(r)) to S. Let F ∗1 be those of F ∗

that are matched this way. Other facilities in R have in-degree zero; let us call this set R0. Note that

|F ∗ \ F1| ≤ 2|R0|.

Now we can add other pairs by arbitrarily matching each node of R0 with at most two in F ∗ \ F ∗1 .

Observation: For any pair (r, f∗) ∈ S and f̃∗ ∈ F ∗ with f̃∗ 6= f : φ(f̃∗) 6= r.

We use the fact that none of these potential swaps (in S) are improving to derive a bound on the cost of
local optimum. Suppose that σ : D → F ′ and σ∗ : D → F ∗ are mappings of clients to facilities in the
local optimum and global optimum, respectively. For each j ∈ D, let Oj = d(j, F ∗) = d(j, σ∗(j)) be the
cost of connecting j in the optimum solution and Aj = d(j, F ′) = d(j, σ(j)) be its cost in the local optimum.
We use N∗(f∗) = {j|σ∗(j) = f∗, f∗ ∈ F ∗} to denote those assigned to f∗ in the optimum solution and
N(f) = {j|σ(j) = f, f ∈ F ′} to denote those assigned to f in the local optimum.

Lemma 8.2 For each swap (r, f∗) ∈ S:

kmed(F ′ + f∗ − r)− kmed(F ′) ≤
∑

j∈N∗(f∗)

(Oj −Aj) +
∑

j∈N(r)

2Oj .

Proof: Suppose we do the swap (r, f∗) and let’s see how much the cost increases (note that since we are at a
local optimum, this must be the case). We can upper bound this by giving a specific assignment of clients to
facilities. Clearly the optimum assignment of clients to facilities cannot cost more than this:

• each client of N∗(f∗) is assigned to f∗

• each client j ∈ N(r) \ N∗(f∗) is assigned by the following rule: suppose f̃∗ = σ∗(j); we assign j to
f̃ = φ(f̃∗). Note that f̃ 6= r.

• the assignment of all other clients remain unchanged.

For each j ∈ N∗(f∗) the change in cost is exactly Oj − Aj ; summing this over all j ∈ N∗(f∗) gives the first
term on the RHS. For j ∈ N(r) \N∗(f∗), the change in cost is:

d(j, f̃)− d(j, r) ≤ d(j, f̃∗) + d(f̃∗, f̃)− d(j, r) using triangle inequality

≤ d(j, f̃∗) + d(f̃∗, r)− d(j, r) since f̃ is closest to f̃∗

≤ d(j, f̃∗) + d(j, f̃∗) using triangle inequality
= 2Oj
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Thus, summing up the total change for all these clients is at most:
∑
j∈N(r)\N∗(f∗) 2Oj ≤

∑
j∈N(r) 2Oj .

Now we use this lemma and sum over all pairs (r, f∗) ∈ S. Note that each f∗ ∈ F ∗ appears exactly once and
each r ∈ R ⊆ F ′ appears at most twice. Therefore:

∑
(r,f∗)∈S

(kmed(F ′ + f∗ − r)− kmed(F ′)) ≤
∑
f∗∈F∗

∑
j∈N∗(f∗)

(Oj −Aj) + 2
∑
r∈R

∑
j∈N(r)

2Oj

≤ kmed(F ∗)− kmed(F ′) + 4kmed(F ∗)

This implies that cost(F ′) ≤ 5cost(F ∗).

Note that the running time of this algorithm is not necessarily polynomial. To get polynomial time algorithm
we only consider swaps which improve the cost by a factor of at least (1 + δ) for some δ > 0. So when the
algorithm stops we are in an almost locally optimum solution, i.e. each potential swap can only improve by a
factor of smaller than 1 + δ. Then the statement of lemma 8.2 would change to:

kmed(F ′ + f∗ − r)− (1− δ)kmed(F ′) ≤
∑

j∈N∗(f∗)

(Oj −Aj) +
∑

j∈N(r)

2Oj .

And then essentially the same analysis shows that the approximation ratio of the algorithm is at most 5(1 + δ)
which is 5 + ε for sufficiently small ε > 0. Since at each step of the local search, the value of the solution
goes down by at least a constant factor, with M being the total sum of all edges as an upper bound for the
value of the initial solution, it takes at most O(log1+δM) steps to arrive at a locally optimum solution which is
polynomial.

Improvment using t-swaps: A similar anaylsis shows that if one considered all t-swaps (instead of just 1-
swaps) for a constant value of t at each step then the local search has a ratio of 3 + 2

t . More specifically, the
algorithm starts with an arbitrary set F ′ of size k and in each iteration it checks whether swapping up to t
centres in F ′ with those in F − F ′ improves the solution or not.

Theorem 8.3 t-swap local search for k-median has approximation ratio 3 + 2
t .

As before let σ, σ be the mapping of clients to centres in F ′ and F ∗, respectively. Similarly φ : F ∗ → F ′ maps
each f∗ ∈ F ∗ to nearest centre in F ′. We give a partition of F ′ to {Ri}ri=1 and F ∗ into {F ∗i }ri=1. For each
element f ∈ F ′ let deg(f) = |φ−1(f)|.

i = 1
While there is an element f ∈ F ′ with degree > 0 do

Ri ← f+ any set of size deg(f)− 1 of elements of F ′ with degree 0.
F ∗i ← φ−1(Ri)
F ′ ← F −Ri; F ∗ ← F ∗ − F ∗i ; i← i+ 1.

Here are some facts about the sets Ri and F ∗i ’s:

• |Ri| = |F ∗i | for all i.
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• Each set Ri has exactly one element with degree > 0.

• For j ∈ Ri, if σ∗(j) 6∈ F ∗i then φ(σ∗(j)) 6∈ Ri.

Lemma 8.4 If |Ri| = |F ∗i | ≤ t then

kmed((F ′ \Ri) ∪ F ∗i )− kmed(F ′) ≤
∑

j∈N∗(F∗
i )

(Oj −Aj) +
∑

j∈N(Ri)

2Oj .

The proof is similar to that of 8.2; assign each j ∈ N∗(F ∗i ) to σ∗(j) and each j ∈ N(Ri) \N∗(F ∗i ) to φ(σ∗(j)).
For the case that |Ri| = |F ∗i | = s > t let R̃i be the degree 0 elements of Ri. We consider all pairs of swaps of
the form (r, f∗) ∈ R̃i × F ∗i .

Lemma 8.5 If |Ri| = |F ∗i | = s > t then:

1

s− 1

∑
(r,f∗)∈R̃i×F∗

i

[kmed(F ′ + f∗ − r)− kmed(F ′)] ≤
∑

j∈N∗(F∗
i )

(Oj −Aj) +
∑

j∈N(Ri)

2Oj .

Proof: Consider each swap (r, f∗) ∈ R̃i × F ∗i . An argument similar to proof of Lemma 8.2 shows: kmed(F ′ −
r + f∗) − kmed(F ′) ≤

∑
j∈N∗(f∗)(Oj − Aj) +

∑
j∈N(r) 2Oj . Now suppose j ∈ N∗(F ∗i ). Then any f∗ ∈ F ∗i

appears in s− 1 pairs of swaps in R̃i × F ∗i . So summing over all of these and noting the 1
s−1 factor we get the

first term on the right hand side. For j ∈ N(R̃i), it appears in s pairs of Ri ×F ∗i . Since s
s−1 ≤ 1 + 1

t , summing

over all these we get the bound
∑
j∈N(Ri)

2(1 + 1
t )Oj .

Thus:

0 ≤
∑

i:|Ri|≤t

(kmed((F ′ \Ri) ∪ F ∗i )− kmed(F ′)) +
∑

i:|Ri|>t

1

|Ri| − 1

∑
(r,f∗)∈R̃i×F∗

i

(kmed(F ′ − r + f∗)− kmed(F ′))

≤
∑
i

(
∑

j∈N∗(F∗
i )

(Oj −Aj) +
∑

j∈N(Ri)

2(1 +
1

t
)Oj)

= kmed(F ∗)− kmed(F ′) + 2(1 +
1

t
)kmed(F ∗)


