
CMPUT 675: Approximation Algorithms Winter 2018

Lecture 15 (March 6, 2018): Cut Problems
Lecturer: Mohammad R. Salavatipour Scribe: Han Wang

15.1 Max-flow / min-cut

Given a graph G(V,E) with edge costs c : E → Q+, and two vertices s, t ∈ V , the min-cut problem is to find
a subset S ⊆ V such that s ∈ S, t /∈ S and the total cost of edges in the cut δ(S) of S is minimized.

This problem can be solved in polynomial time using any algorithm to compute the max-flow and by max-
flow/min-cut theorm.

15.2 Multiway cut

In the multiway cut problem, we are given k vertices, s1, s2, ..., sk, called terminals, and asked to find a
minimum cost set of edges whose removal would disconnect all terminals from each other.

In the case k = 2, this reduces to the min-cut problem. For k ≥ 3 it is NP-hard. We will start by examining a
2(1− 1

k)-approximation for this problem. First, a definition:

Definition 1 A set of edges is called si-cut if its removal separates si from the rest of terminals.

Note: Considering all terminals in S − {si} as one single terminal T , we can find minimum si-cut in polytime

Mulitway-cut Algorithm: Alg1

Input: Graph G = (V,E), terminals si ∈ V , i = 1...k and a cost ce ∈ Q+ for each edge
Output: A minimum cost set of edges whose deletion ensures that no two terminals are connected
1. for i← 1 to k do
2. Compute Ci, a minimum cost si-cut
3. Reorder the Ci’s by cost (so that Ck is the most expensive)

4. return C = ∪k−1i=1 Ci

Figure 15.1: Multi-way cut Algorithm

Theorem 1 Algorithm 1 is a (2− 2
k)− approximation for Multiway-cut problem.

Proof. First note that C is a multi-way cut, since each terminal si (i = 1...k − 1) has been isolated from the
rest by the si-cut Ci. Therefore no edges remain to connect the last terminal sk to any others.

Assume A is an optimum multiway cut in G. Then G − A has k-components (each with one si). Let the
components be G1, G2, ..., Gk. Then we look at the edges among components, as figure ?? shows:

15-1

15-2 Lecture 15: Cut Problems

Figure 15.2: separate V into different components

Let Ai = δ(Gi, G−Gi), we say A =
⋃k

i=1Ai. Since each edge of A is incident at two of these components, each
edge will be in two of the cuts Ai. Thus,

k∑
i=1

w(Ai) = 2w(A)

Since Ci is the munimum cut, we have w(Ci) ≤ w(Ai). Then

k∑
i=1

w(Ci) ≤ 2w(A)

This gives a factor 2 algorithm. Since C is obtained by discarding the heaviest of the cuts Ci,

w(C) ≤ (1− 1

k
)

k∑
i=1

w(Ci) ≤ (1− 1

k
)

k∑
i=1

w(Ai) = 2(1− 1

k
)w(A)

The following example demonstrates that the approximation ratio in Theorem ?? is tight, for 0 < ε < 1:

Notice that Alg1 will, at each iteration, identify a 2− ε edge for the minimum cost si-cut, and therefore accrue
a cost of (2− ε)(k − 1). On the other hand, the optimal solution is to simply cut each edge in the cycle, for a
total cost of k. The approximation ratio is (2− ε)(1− 1

k), and thus can be made arbitrarily close to the bound
in Theorem ??.

15.3 Min Steiner k-cut and min k-cut

Definition 2 Given a connected weighted undirected graph G(V,E), find a minimum weight set C of edges that
G− C has k components.

Unlike multiway cut, this problem belongs to P for any fixed k, but it remains NP-Complete for arbitrary k.
There is a common generalization of both multiway cut and min k-cut, called Steiner k-cut.

Definition 3 Steiner k-cut: given a connected undirected weighted graph G(V,E), a set X ⊆ V of terminals,
and integer k; find a minimum weight cut that creates k components, V1, ..., Vk such that Vi ∩ X 6= φ for
1 ≤ i ≤ k.

Lecture 15: Cut Problems 15-3

s1

2-ε s2

2-ε

s32-ε

sk

2-ε

...

Figure 15.3: Example problem. Each vertex in a cycle of k nodes is connected with a terminal by an edge with
weight 2− ε. Edges in the cycle all have weight 1. Alg1 will always select the more costly edges for removal.

If |X| = k then we have the multiway cut problem. If X = V then we have the min k-cut problem. We present
a 2(1− 1

k)-approximation algorithm for Steiner k-cut.

Let T (V,ET) be a tree on V (but may contain edges that are not in E). For each uv ∈ ET , T − uv has two
components on vertex sets S and V − S. Consider the cut (S, V − S) in G. We call this cut the cut associated
with uv. If T satisfies the following two properties then we call it a Gomory-Hu tree:

1. w(uv) in T is the weight of the cut associated with uv,

2. ∀u, v ∈ G, the minimum u, v-cut in G has the same weight as the minimum u, v-cut in T .

It can be proved that:

Lemma 1 we can compute a Gomory-Hu tree in polytime.

Steiner k-cut Algorithm:
Compute a G-H tree
For k − 1 iteration do:

pick the smallest edge in T that separates a pair of terminals (in X) that are not already separated.
Return the union of the cuts associated with these edges, call it C.

Lemma 2 The algorithm returns a Steiner k-cut.

Proof. Clearly each component generated has at least one terminal. Also, each cut (corresponding to an edge of
T) increases the number of components by 1. Since the algorithm has k−1 iterations, there will be k connected
components at the end.

Theorem 2 This is a 2(1− 1
k)-approximation algorithm for Steiner k-cut.

15-4 Lecture 15: Cut Problems

Proof. Assume that A is an optimal solution and let V1, ..., Vk be the components of G − A. Define Ai =
(Vi, V −Vi). Each Vi has at least one vertex of X. Choose a terminal from each each Vi and call it ti, 1 ≤ i ≤ k.
Without loss of generality, assume that w(A1) ≤ w(A2) ≤ . . . ≤ w(Ak). We show that there are k − 1 cuts
defined by the edges of T whose weights are dominated by the weights of A1, . . . , Ak−1. Since each edge of A
belongs to exactly two Ai’s:

k∑
i=1

w(Ai) = 2w(A).

Let T ′ ⊆ T be the set of edges of T that correspond to the cuts A1, . . . , Ak. Consider the graph on vertex set V
and edges set T ′. Now shrink each Vi (1 ≤ i ≤ k) into a single vertex ti. We obtain a connected graph (because
T was origianlly connected). Delete extra edges until we are left with a tree on t1, . . . , tk, call it B. Note that
the k − 1 edges that remain in B belong to T , too. Put directions on the edges of B such that each edge is
directed toward tk. This helps in defining a correspondence between the edges of B and sets V1, . . . , Vk−1: each
edge of B corresponds to one set Vi (1 ≤ i ≤ k− 1), i.e. the one which has the terminal that the edge is coming
out of in the rooted tree. Consider an edge uv of B corresponding to a leaf, say ti. By property 2 of G-H trees:
w(uv) is the weight of a minimum u, v-cut in G. Therefore, the weight of this edge is at most w(Ai). We can
now remove this vertex and edge from the tree and do the same argument. Since we pick the k − 1 lightest
edges of T (that separate terminals from X), this implies that:

k−1∑
i=1

w(Ci) ≤
k−1∑
i=1

(Ai).

Therefore:

w(C) ≤
k−1∑
i=1

w(Ci) ≤
k−1∑
i=1

w(Ai) ≤ (1− 1

k
)

k∑
i=1

w(Ai) ≤ 2(1− 1

k
)w(A).

15.4 An LP approach to multi-way cut

We now consider an LP formulation of the multi-way cut problem. To do this, we will construct a set of subsets
of vertices, C1, C2, ...Ck ⊆ V , such that (for i = 1...k) each si belongs to Ci (and to no others), analogous to
the G1, G2, ...Gk defined in the proof of Theorem ??.

For i = 1...k we define two indicator variables: let xiu indicate membership of vertex u ∈ V in set Ci (i = 1...k)
and zie membership of edge e ∈ E in the cut of Ci :

xiu =

{
1 if u ∈ Ci

0 otherwise
zie =

{
1 if e ∈ δ(Ci)

0 otherwise

Lecture 15: Cut Problems 15-5

The LP formulation is to minimize the total weight of selected edges (the objective):

minimize
1

2

∑
e∈E

ce

k∑
i=1

zie

subject to

k∑
i=1

xiu = 1, ∀u ∈ V,

zie ≥ xiu − xiv, ∀e = (u, v) ∈ E,
zie ≥ xiv − xiu, ∀e = (u, v) ∈ E,
xisi = 1, i = 1, . . . , k,

xiu ∈ {0, 1}, ∀u ∈ V, i = 1, . . . , k.

(15.1)

The first constraint ensures that each vertex belongs to one part. The second and third constraints are to ensure
that for every edge, if two vertices are separated the edge is counted in the cut. And finally, each terminal is in
a different part. If we recall the l1 metric for x,y ∈ Rk:

Definition 4 Given x, y ∈ Rn, the l1 metric is a metric such that the distance between x, y is ||x − y||1 =∑n
i=1 |xi − yi|.

then this formulation can be simplified by thinking of each vertex in V as a point in Rk space: xu = (x1u, x
2
u, ...x

k
u).

The last constraint in ?? becomes:

xisi = 1 =⇒ xsi = ei︸︷︷︸
unit vector in ith dimension

The first constraint can be replaced with:

k∑
i=1

xiu = 1 =⇒ xu ∈ ∆k︸︷︷︸
kth simplex

:=

{
x ∈ Rk|

k∑
i=1

xiu = 1

}

Notice also that we have :

k∑
i=1

zie =

k∑
i=1

|xiu − xiv| = ‖xu − xv‖1

So we rephrase ?? as a simpler problem, in terms of these k-vectors:

min

1

2

∑
e=(u,v)∈E

ce‖xu − xv‖1

 (15.2)

xsi = ei, ∀i ∈ {1, 2...k} (15.3)

xu ∈ ∆k, ∀u ∈ V (15.4)

15-6 Lecture 15: Cut Problems

15.4.1 An example

Now consider an example:

s1

ws2 s3

u v

2

2

2 2

2

2

1

1 1

(1,0,0)

(12 , 0,
1
2)(12 ,

1
2 ,0)

(0, 12 ,
1
2)

(0,0,1)(0,1,0)

Figure 15.4: Example problem. We have three terminals, so the LP relaxation for the problem assigns a 3-vector
to each node in the graph (in brackets)

.

An optimal solution would be to cut the edges (s1, u), (s1, v), as well as (s2, u), (s2, w), for a total cost of 8. On
the other hand, the total cost weight for the solution to the relaxed LP problem is 7.5.

