
CMPUT 675: Approximation Algorithms and Approximability Winter 2018

Lecture 13 (Feb 27th, 2018): Generalized Assignment Problem
Lecturer: Mohammad R. Salavatipour Scribe: Based on older notes

13.1 Generalized Assignment Problem (GAP)

Problem Description:
Recall the Generalized Assignment Problem (GAP) from last lecture. In this problem we are given a set J of
n jobs, and m unrelated machines. Let pij be the processing time of job j on machine i and cij be the cost
of running job j on machine i. Let T be the bound by which we want to finish all the jobs. Our goal is to
find a scheduling of the jobs on the machines so that all the jobs are done before time T and we minimize the
cost of processing these jobs. The following is a natural LP relaxation for this problem known as Generalized
Assignment Problem (GAP):

min
∑
i,j cij · xij∑

i xij = 1 1 ≤ j ≤ n∑
j pij · xij ≤ T 1 ≤ i ≤ m

xij ≥ 0

Note that even to detect if there is a feasible schedule (respecting the deadline bound T) is NP-hard. Therefore,
we cannot have an approximation algorithm. Instead, we present a bicriteria algorithm in the sense that it
either detects that there is no feasible solution or finds a solution of cost at most OPT but violates the time
constraint by a factor ≤ 2. Before we start talking about the algorithm for GAP we talk about the bipartite
matching LP.

Bipartite Matching Polytope
Before presenting our algorithm we first present a classical result from combinatorial optimization. Consider a
bipartite graph G = (V ∪U,E) with |U | ≤ |V |. We assume that each edge e has a given cost ce. We say M ≤ E
is a complete matching if saturates all of U , i.e. ∀u ∈ U , u has degree 1 in M and ∀v ∈ V , v has degree ≤ 1
and ∀v ∈ V has degree ≤ 1. We say M is a perfect matching with every vertex of U and V has degree 1 in M
(obviously we must have |U | = |V | = |M |). We can talk about minimum cost complete matching as well (one
that has minimum total cost). We can write the minimum cost complete matching problem as the following
integer program:

minimize
∑
e

ce · xe∑
u:uv∈E

yuv ≤ 1 ∀v ∈ V∑
v:uv∈E

yuv = 1 ∀u ∈ U

yuv ∈ {0, 1}

By relaxing the last constraint to yuv ≥ 0 we obtain an LP.

13-1

13-2 Lecture 13: Generalized Assignment Problem

Theorem 1 For any bipartite graph G(U∪V,E), any bfs of the above LP is integral. Also any feasible fractional
solution can be turned to an integral solution of no more cost.

Now back to the GAP, suppose x̄ is an optimal solution with cost C∗ to the LP presented. So we have a total
of
∑n
j=1 xij (fractional) jobs assigned to machine i. Suppose we allocate d

∑n
j=1 xije = ki slots for machine i;

think of each as a unit size bin. We build a bipartite graph B = (J ∪ S,E) (where S is the set of all slots over
all machines) in the following way. For each job j we will have a node in J . We will have a node (i, s) in S for
each i, s where i is the ith machine (1 ≤ i ≤ m) and s is the sth slot (1 ≤ s ≤ ki). Consider the jobs assigned
by LP to i. They are the only jobs that will have an edge to (i, s) (detailed below). Ideally we would like to
have the following properties in our bipartite graph:

1. B has a fractional complete matching for J of cost at most C∗

2. Each integer complete matching on J corresponds to an assignment of jobs to machines of cost at most
C and completion time ≤ 2T .

If we can obtain such a fractional complete matching, then using Theorem 1 we should be able to find an integer
solution of cost at most C∗ with completion time at most 2T . Now we describe the edges of the bipartite
graph B. Consider a machine i and suppose we sort the jobs in none-increasing order of their size on i, i.e.
pi1 ≥ pi2 ≥ · · · pki . Now we consider slots (i, s) for 1 ≤ s ≤ ki as unit size bins and xij as fractional pieces of
the jobs to be packed in these bins. We go through the jobs in that order and fill slot (i, 1) until it becomes full
and we move on to the next slot. If at a point we have a capacity z is left in a bin and for job j we have xij > z
we fill that bin using xij − z fraction of job j and the rest of that job goes to the next slot. Let yj,(i,s) be the
fraction of job j assigned to bin/slot (i, s), ∀j. We will have an edge j, (i, s) in B if yj,(i,s) > 0, the cost of this
edge is set to cij . Note that each job has fractional degree 1 (since

∑
i xij = 1). (see Figure 13.1).

So the yj,(i,s) constitute a fractional matching (covering all of J) in B and clearly the cost of the matching is
at most

∑
i,j cijxij since we are assigning the jobs fractionally in the same way as the LP does. Now we want

to show that the second property mentioned above holds for B. Consider some slot (i, s) and let max(i, s) be
defined to be longest job assigned to to slot (i, s). then if we consider any matching in B the total “load” (sum
of processing time of jobs) assigned to machine i is at most:

ki∑
s=1

max(i, s).

Also note that each job by itself is most T . Therefore if we show that
∑ki−1
s=1 max(i, s) ≤ T then we have shown∑ki

s=1 max(i, s) ≤ 2T . Thus if we find a min-cost matching in B then each machine load is at most 2T and we
are done. Below we complete this argument.

First note that all the slots except the last one for machine i is full, i.e. 1 ≤ s ≤ ki − 1:
∑
j yj,(i,s) = 1. So∑

j pijyj,(i,s) is a weighted average of processing times assigned to slot (i, s). Since the jobs are considered in
non-increasing order of their processing times, the largest job assigned to slot s+ 1 is no more than the average
assigned to slot s, i.e. max(i, s+ 1) ≤

∑
j yj,(i,s)pij , which implies

ki−1∑
s=1

max(i, s+ 1) ≤
ki−1∑
s=1

∑
j

yj,(i,s)pij ≤
ki∑
s=1

∑
j

yj,(i,s)pij .

Noting that xij =
∑
s yj,(i,s), and by changing the order of sums in the RHS, we can uppoer bound that

expression by
∑
j

∑
s yj,(i,s)pij =

∑
j pijxij ≤ T .

Lecture 13: Generalized Assignment Problem 13-3

Figure 13.1: Example taken from WS book

13.2 Concentration bounds and Integer Multicommodity flow

In this section we see another problem called Integer Multicommodity flow with the goal of minimizing conges-
tion. Before that, we review some of the basic bounds used to prove concentration of random variables around
their mean.

Markov’s inequality (first moment method): If X is a random variable taking non-negative values then

Pr[X ≥ a] ≤ E[X]
a for any a > 0.

For example, consider the problem of flipping a coin n times and let X be the number of heads. Then E[X] = n/2
and using Markov’s inequality, Pr[X ≥ 3n/4] ≤ 2

3 .

Recall the definition of variance and standard deviation:

Definition 1

V ar[X] = E[X2]− (E[X])2 = E[(X − E[X])2].

σ(X) =
√
V ar[X].

We can upper bound the probability that a random variable is away from its mean using the variance.

13-4 Lecture 13: Generalized Assignment Problem

Theorem 2 (Chebyshev’s Inequality) Let X be a random variable. Then for any λ > 0:

Pr[(X − E[X]) ≥ λ] ≤ V ar[X]

λ2
.

Proof.

Pr[(X − E[X]) ≥ λ] = Pr[(X − E[X])2 ≥ λ2] ≤ E[(X − E[X])2]

λ2

by Markov’s Inequality. Thus:

Pr[(X − E[X]) ≥ λ] ≤ V ar[X]

λ2
.

Equivalently:

Pr[|X − E[X]| ≥ tE[X]] ≤ V ar[X]

t2(E[X])2
.

The use of Markov’s inequality is referred to as first moment method and the use of Chebyshev’s inequality is
referred to as second moment method.

For the example of flipping n coins, using Chebyshev’s inequality:

Pr[X >
3n

4
] ≤ Pr[(X − E[X]) ≥ n

4
] ≤ n/4

(n/4)2
=

4

n

Theorem 3 (Chernoff Bound) Assume X1, X2, . . . , Xn are independent Poisson trials with Pr[Xi = 1] =
pi, for0 < pi < 1. Then for X =

∑n
i=1Xi, µ = E[X]:

1. for any 0 < δ: Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

2. for any 0 < δ ≤ 1: Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3.

3. for any R ≥ 6µ: Pr[X ≥ R] ≤ 2−R.

Note that these bounds are independent of µ.

Similarly, we can show:

Theorem 4 Under the same assumptions as in Theorem 3:

1. for any 0 < δ < 1: Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1−δ)(1−δ)

)µ
.

2. for any 0 < δ < 1: Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2.

Corollary 1 For 0 < δ < 1:

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.

Lecture 13: Generalized Assignment Problem 13-5

13.2.1 Example : Flipping n unbiased coins

Suppose we flip n unbiased coins uniformly randomly and independently. Let Xi = 1 if coin i is heads and
X =

∑
Xi is the number of heads, E[X] = n

2 . Using the Chernoff bound,

Pr
[
X ≥ n

2
+ λ
]

= Pr

[
X ≥ µ(1 +

λ

µ
)

]
≤ e−(λµ)

2 µ
3 = e

−λ
3µ .

Now try λ =
√

3n lnn. Then λ2

3µ = 3n lnn
3n2

= 2 lnn. So we have

Pr[X ≥ µ+
√

3n lnn] ≤ e−2 lnn = n−2.

This is a better bound than given by Chebyshev’s inequality: σ2[X] =
∑
σ2[Xi] = n

4 and

Pr[X ≥ µ+ λ] ≤ σ2

λ2
∈ O(n)

O(n lnn)
= O(

1

lnn
).

13.2.2 Integer Multicommodity Flow

Consider the following multicommodity network problem. Given a graph G = (V,E), and k pairs of vertices
(source/sink) {(s1, t1), (s2, t2), . . . , (sn, tn)}. The problem is to find a feasible solution which consists of a set of
n paths p1, p2, ..., pn such that pi is a path from si to ti. The congestion of each edge e is the number of paths
using the edge. Our goal is to minimize the maximum number of paths that use any edge, that is find a feasible
solution with minimum maximum congestion.

Denote the set of all paths between si and ti by Pi and let xi,p be the indicator variable that is 1 if we pick
path p ∈ Pi.

minimize C
subject to

∑
p∈Pi xi,p = 1 ∀i∑
p∈Pi:e∈p xi,p ≤ C ∀e ∈ E

xi,p ∈ {0, 1}

This is an integer program formulation of our problem. If we relax the constraint on xi,p to be real value between
0 and 1, i.e. 0 ≤ xi,p ≤ 1 (instead of xi,p ∈ {0, 1}) we obtain a linear programming relaxation of the problem.
Note that the solution to linear program (LP) is no more than the solution to the integral program (IP).

Exercise: We can solve this LP using LP solvers in polynomial time.

One property of the solution to this LP is that it has only a polynomially many number of nonzero variables
xi,p.

Denote by vector x∗ the optimal fractional solution and denote by C∗ the value of the optimal fractional solution.
For every i, we are going to choose exactly one path from Pi. The probability that we choose p ∈ Pi is exactly
equal to x∗i,p (note that the sum of these values is 1). Let random variable Y ie = 1 if and only if the selected

13-6 Lecture 13: Generalized Assignment Problem

path for si, ti contains edge e. Thus, the congestion of edge e is Ye =
∑n
i=1 Y

i
e .

E[Ye] = E

[
n∑
i=1

Y ie

]

=

n∑
i=1

E[Y ie]

=

n∑
i=1

Pr[Y ie = 1]

=

n∑
i=1

∑
p∈Pi:e∈p

x∗p

≤ C∗

If µ = E[Ye] ≥ 1 then let 1 +α = d lnn
ln lnn for some constant d > 0 where n = |V |. So (1 +α) ln(1 +α)−α ≥ 3 lnn

if d is large enough, which implies:

Pr[Ye ≥ (1 + α)µ] ≤ e−(3 lnn) ≤ 1

n3
. (13.1)

Since µ ≤ C∗ ≤ OPT , (13.1) implies that Pr[Ye ≥ (1 + α)OPT] ≤ 1
n3 . If µ < 1 then let αµ = d lnn

ln lnn for large
enough d. Then ((1 + α) ln(1 + α)− α)µ ≥ 3 lnn for large enough d. Therefore:

Pr[Ye ≥ (1 + α)µ] ≤ e−(3 lnn) ≤ 1

n3
. (13.2)

Note that in this case the congestion in optimal (integral) solution is at least 1. So the probability that congestion
of e is larger than O(lnn

ln lnnOPT) is at most 1
n3 by (13.2). In either case, the probability that for edge e, the

congestion is larger than OPT by a factor of O(lnn
ln lnn) is at most 1

n3 . Summing this probability over all edges,

we see that with probability at least 1− n2 1
n3 = 1− o(1) every edge has congestion at most O(lnn

ln lnnOPT).

