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11.1 k-median via Lagrandian Relaxation

Recall, for the k-median problem we are given a graph G = (V,E) along with a cost function c : E → Q+

satisfying the metric property. We also have a set F ⊆ V of centres and a set C ⊆ V of clients, plus an integer
k. The goal is to open/select k centres and assign each client to the nearest selected centre to minimize the sum
of distances of clients to their centres. The following IP formulates k-median:

min
∑

i∈F,j∈C
cijxij

s.t.
∑
i∈F

xij ≥ 1 j ∈ C

yi − xij ≥ 0 i ∈ F, j ∈ C∑
i∈F
−yi ≥ −k

xij , yi ∈ {0, 1}, i ∈ F, j ∈ C

(11.1)

By relaxing the last constraint to 0 ≤ xij ≤ 1 obtain an LP. Define dual variables α for the first constraint, β
for the second constraint , and z for the last. We then find the following dual LP

max
∑
j∈C

αj − zk

s.t. αj − βij ≤ cij i ∈ F, j ∈ C∑
i∈F

βij − z ≤ 0 i ∈ F

αj , βij , z ≥ 0, i ∈ F, j ∈ C

(11.2)

11.1.1 The high level idea

The linear programs above and those for uncapacitated facility location are very similar and we will make use
of this similarity to come up with an algorithm to solve the k-median problem. To make use of this similarity
we assign a cost of fi = z for opening each facility i ∈ F . Suppose we know a good value for z such that if we
run the facility location primal/dual algorithm it opens exactly k centres. In other words we find primal and
dual solutions (x,y) and (α, β) respectively, where

∑
i

yi = k and
∑

i∈F,j∈C
cijxij + 3zk ≤ 3

∑
j∈C

αj

Therefore:

∑
i∈F,j∈C

cijxij ≤ 3(
∑
j∈C

αj − zk)
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Hence, we find an integral solution for k-median that is in 3 times the optimal. However, there is a problem
with this approach: what is the value for z? In the case the algorithm opens more than k facilities, then the
solution is infeasible for the k-median problem. If it opens fewer than k facilities, then the above inequalities
fail.

Thus, the problem is to find z such that the algorithm opens exactly k facilities. Observe, if z = 0 then the
algorithm will open all |F | facilities, and if z is a sufficiently large value M then the algorithm opens only 1
facility. So, if cmax is the largest client cost, we can perform binary search on the range [0, ncmax] to find
values z1 and z2 such that the algorithm opens k1 > k facilities and k2 < k facilities respectively, and such that
z1 − z2 ≤ cmin

O(n2) , where nc = |C|.

We let (x1, y1) and (x2, y2) be the primal solutions induced from the above values of z, and (α1, β1) and (α2, β2)
be the corresponding dual solutions. Pick a and b such that k = ak1+bk2, and define (x, y) = a(x1, y1)+b(x2, y2),
note a = (k2− k)/(k2− k1) and b = (k− k1)/(k2− k1). It is not hard to see that these convex solutions satistfy
the constraints of (11.1) and (11.2). To see this, notice that the left side of each constraint can be expanded
into a convex combination of the solutions for z1 and z2, which will be bounded by a convex combination of the
right hand side of the constraint which will just be the constraint.

Lemma 1 The cost of (x, y) is within a factor of (3 + 1/nc) of the cost of an optimal fractional solution OPT
of the k-median problem

Proof. Recall the following inequalities for feasible solutions∑
i∈F,j∈C

cijx
1
ij ≤ 3(

∑
j∈C

α1
j − z1k1) (11.3)

∑
i∈F,j∈C

cijx
2
ij ≤ 3(

∑
j∈C

α2
j − z2k2) (2) (11.4)

We will also need to make note of the following two facts

• Fact 1: z1 − z2 ≤ cmin/O(n2)

• Fact 2:
∑
ij cijx

1
ij ≥ nccmin

Since z1 > z2 we have that (α2, β2) is a feasible dual solution to the facility location problem; even if the
facilities have a cost of z1. To prove the desired bound we will find an updated bound for inequality (11.2).
Using above facts we can find:∑

i∈F,j∈C
cijx

2
ij ≤ 3(

∑
j∈C

α2
j − z2k2) = 3(

∑
j∈C

α2
j − (z2 + z1 − z1)k2) = 3(

∑
j∈C

α2
j − z1k2) + 3(z1 − z2)k2

≤ 3(
∑
j∈C

α2
j − z1k2) + k2cmin/O(n2) ≤ 3(

∑
j∈C

α2
j − z1k2) +OPT/nc

Where the first and second inequalities follow from Facts 1 and 2 respectively, the third inequality follows since
k2 < n and cmin ≤ OPT .

Adding the inequality that we find above, multiplied by b with inequality (11.1) multiplied by a, we easily find
the following: ∑

i∈F,j∈C
cijxij ≤ a(3(

∑
j∈C

α1
j − z1k1)) + b(3(

∑
j∈C

α2
j − z1k2) +OPT/nc)
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= 3(
∑
j∈C

α1
j − z1k) + bOPT/nc ≤ (3 + 1/nc)OPT

Where α = aα1 + bα2 and β = aβ1 + bβ2. All that remains to be seen is the fact that (α, β, z1) is a feasible
solution to the k-median dual. This certainly holds since (α1, β1) and (α2, β2) are feasible, thus

∑
j∈C β

l
ij ≤ zl

for l ∈ {1, 2}. So
∑
j∈C βij ≤ z = az1 + bz2 ≤ (a+ b)z1 = z1. So the last inequality holds.

11.2 Obtaining an integral solution to the k-Median

In this section we give a randomized rounding procedure for the k-median problem which rounds the solution
from the previous section, and in doing so will only increase the cost by a factor of 1 + max(a, b). Let A and
B be the sets of facilities opened by solutions (x1, y1) and (x2, y2) respectively, so |A| = k1 and |B| = k2. The
rounding procedure is given as follows:

For each facility in A, find the nearest facility in B, and denote these facilities by B′. If |B′| < k1, then
arbitrarily include facilities from B − B′ until |B′| = k1. With probability a, open all facilities in A, and with
probability b = 1 − a, open the facilities in B′. Then with uniform, random probability pick a set of k − k1
facilities from B −B′, and open these as well. Denote the set of facilities opened by I.

Let φ : C → I be the assignment of clients to facilities in the randomized solution. For j ∈ C suppose i1 ∈ A
and i2 ∈ B are the facilities j is assigned to in both solutions, then we have the following cases:

• Case 1: i2 ∈ B′. then one of i1 and i2 is opened by the procedure above, with probability a and b
respectively. j is simply assigned to the open one.

• Case 2: i2 /∈ B′. Let i3 ∈ B′ be the facility nearest to i1. If i2 is open, then j is assigned to it. If i2 ∈ I
then j assigned to i2, note that this happens with probability b. Otherwise, assign j to i1 if i1 is open. In
the case that neither is open, assign j to i3.

Denote c∗j = aci1j + bci2j , the cost of assigning client j in the convex solution (x, y).

Lemma 2 For each client j ∈ C, E[cφ(j)j ] ≤ (1 + max(a, b))c∗

Proof. To prove this lemma we examine the cases for φ. If i2 ∈ B′, then E[cφ(j)j ] = aci1j + bci2j = c∗j

If i2 /∈ B′, then i2 is open with probability b. The probability i2 is not open and whereas i1 is open is (1−b)a = a2,
the probability both are not open is (1− b)(1− a) = ab. Thus we have E[cφ(j)j ] ≤ bci2j + a2ci1j + abci3j .

Since i3 is in the facility in B that is closest to i1 we have by the triangle inequality, ci1i3 ≤ ci1i2 ≤ ci1j + ci2j ,
similarly we have ci3j ≤ ci1j + a2ci1j ≤ 2ci1j + ci2j . Noting a2ci1j + abci1j = aci1j we find

E[cφ(j)j ] ≤ bci2j + a2ci1j + ab(2ci1j + ci2j) ≤ (aci1j + bci2j) + ab(ci1j + ci2j)

≤ (aci1j + bci2j)(1 + max(a, b)) = (1 + max(a, b))c∗j

Let (xk, yk) denote the integral solution found by this randomzied procedure. We can easily see using Lemma
2 that,

E[
∑

i∈F,j∈C
cijx

k
ij ] ≤ (1 + max(a, b))

∑
i∈F,j∈C

cijxij ≤ 2
∑

i∈F,j∈C
cijxij

Combinnig Lemma 1 and Lemma 2 we finally observe the following theorem.
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Theorem 1 Using the primal/dual algorithm for Facility Location and Lagrangian Relaxation for the k-Median
problem, we find a (6 + ε)-approximation to the k-Median problem.


