CMPUT 675: Topics on Approximation Algorithms and Approximability Fall 2015
 Lecture 17-18 Semidefinite Programming, Max-Cut, Max-2SAT: Oct 25-27
 Lecturer: Mohammad R. Salavatipour
 Scribe: Roshan Shariff

17.1 Semidefinite Programming

Quadratic programming is concerned with optimizing a quadratic function of variables subject to quadratic constraints. A quadratic program is strict if the objective function and each of the constraints consist only of degree 0 or 2 monomials. Here we are concerned with a type of strict quadratic program called a semidefinite program.

Definition 17.1 Let $x \in \mathbb{R}^{n \times n}$ be a symmetric $n \times n$ real matrix. We say that x is positive semidefinite (and write $x \succeq 0$) if $a^{T} x a \geq 0$ for all $a \in \mathbb{R}^{n}$.

Theorem 17.2 If $x \in \mathbb{R}^{n \times n}$, the following are equivalent:
(a) $x \succeq 0$.
(b) x has non-negative eigenvalues.
(c) $x=v^{T} v$ for some $v \in \mathbb{R}^{m \times n}$ with $m \geq n$.
(d) $x=\sum_{i=1}^{m} \lambda_{i} w_{i} w_{i}^{T}$ for some $\lambda_{i} \geq 0$ and $w_{i} \in \mathbb{R}^{n}$ with $w_{i}^{T} w_{i}=1$ and $w_{i}^{T} w_{j}=0$ for $i \neq j$.

In the following, let $C, D_{1}, D_{2}, \ldots, D_{k} \in \mathbb{R}^{n \times n}$ be symmetric matrices and $d_{1}, d_{2}, \ldots, d_{k} \in \mathbb{R}$ be constants.
Definition 17.3 A semidefinite program is an optimization problem of the form

$$
\begin{aligned}
& \max / \min \sum_{1 \leq i, j \leq n} C_{i j} x_{i j}, \\
& \text { subject to: } x \in \mathbb{R}^{n \times n} ; \\
& \sum_{1 \leq i, j \leq n} D_{l, i j} x_{i j}=d_{l}, \text { for all } 1 \leq l \leq k ; \\
& x \succeq 0 .
\end{aligned}
$$

Using the notation $A \cdot B$ (for $A, B \in \mathbb{R}^{n \times n}$) to mean $\operatorname{tr}\left(A^{T} B\right)=\sum_{i} \sum_{j} A_{i j} B_{i j}$, we can also write a semidefinite program as

$$
\begin{array}{rl}
\max / \min C \cdot x & x \in \mathbb{R}^{n \times n} \\
\text { subject to: } D_{l} \cdot x & =d_{l}, \\
& \text { for all } 1 \leq l \leq k \\
x \succeq 0 . &
\end{array}
$$

If the matrices C and $D_{1}, D_{2}, \ldots, D_{k}$ are diagonal, then the above semidefinite program is a linear program.

Definition 17.4 A vector program is an optimization problem of the form

$$
\begin{array}{ll}
\max / \min & \sum_{1 \leq i, j \leq n} C_{i j}\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle, \\
\text { subject to: } & \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n} ; \\
\sum_{1 \leq i, j \leq n} D_{l, i j}\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=d_{l}, & \text { for all } 1 \leq l \leq k .
\end{array}
$$

The n vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ give n^{2} variables, with $Y_{i j}=\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle$. The matrix Y is always positive semidefinite.

Lemma 17.5 A vector program is equivalent to the corresponding semidefinite program defined by the matrix Y as above.

Proof: Given a solution $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ to the vector program, let $W \in \mathbb{R}^{n \times n}$ be defined as

$$
W=\left[\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\vdots & \vdots & & \vdots
\end{array}\right]
$$

and let $x=W^{T} W$. By condition (c) of Theorem 17.2, $x \succeq 0$, so it is a feasible solution to the semidefinite program. Moreover, $x_{i j}=\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle$, so it has the same objective value.

The converse proof is left as an exercise.
For any given $\varepsilon>0$, we can find a solution to the semidefinite program with additive error ε.

17.2 Max-Cut

Given an undirected graph $G=(V, E)$ with weights $w: E \rightarrow \mathbb{Q}^{+}$, the Max-Cut problem is to find a maximal cut S :

$$
\max _{S \subset V} \sum_{e \in \delta(S)} w(e)
$$

where $\delta(S)$ is the set of edges with one vertex in S and the other not in S.
The randomized algorithm that independently picks each edge with probability $1 / 2$ is a trivial $1 / 2$-approximation for this problem. To try to do better, consider the following integer program formulation:

$$
\begin{array}{lll}
\operatorname{maximize}: & \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-y_{i} y_{j}\right), & y_{i} \in \mathbb{Z} \\
\text { subject to: } & y_{i}^{2}=1, & \text { for all } i \in E .
\end{array}
$$

Since this is an integer program, the constraint ensures $y_{i} \in\{-1,1\}$ for each $i \in E$. A vector program relaxation of this integer program is:

$$
\begin{array}{lll}
\text { maximize: } & \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-\vec{v}_{i} \cdot \vec{v}_{j}\right), & \vec{v}_{i} \in \mathbb{R}^{n} \\
\text { subject to: } & \vec{v}_{i} \cdot \vec{v}_{i}=1, & \text { for all } i \in E .
\end{array}
$$

Given a solution y to the integer program, setting $\vec{v}_{i}=\left(y_{i}, 0, \ldots, 0\right)$ for each $i \in V$ gives a feasible solution to the vector program with the same objective value.

17.2.1 Example

Figure 17.1a shows a cyclic graph $G=(V, E)$ with 5 vertices. If each edge has weight 1 , the maximum cut has a value of $\mathrm{OPT}_{\mathrm{MC}}=4$. Figure 17.1 b shows the vectors $\vec{v}_{1}, \ldots, \vec{v}_{5}$ that are the optimal solution to the above vector program relaxation. The angle between \vec{v}_{i} and \vec{v}_{j} for any $(i, j) \in E$ is $4 \pi / 2$, so $\vec{v}_{i} \cdot \vec{v}_{j}=\cos (4 \pi / 5)$. The value of the vector program objective is therefore

$$
Z_{\mathrm{VP}}=\frac{5(1-\cos (4 \pi / 2))}{2} \approx 4.52
$$

Any rounding procedure that produces an integer solution based on this vector program solution will therefore incur an approximation ratio of at least $\mathrm{OPT}_{\mathrm{MC}} / Z_{\mathrm{VP}} \approx 0.885$. With a good rounding strategy, we could do better than the naive randomized algorithm which has a ratio of $1 / 2$.

(a) A cyclic graph with 5 vertices.

(b) Optimal max-cut vector program solution.

Figure 17.1: An example of a graph and the optimal solution to the corresponding max-cut vector program relaxation.

17.2.2 Random Hyperplane Rounding

VP Max-Cut Rounding
1 let $\vec{v}_{1}, \ldots, \vec{v}_{n} \leftarrow$ optimal solution to above vector program
let $\vec{r} \leftarrow$ uniformly random from the unit n-sphere
return $S=\left\{i: \vec{v}_{i} \cdot r \geq 0\right\}$
Note: To sample the random vector \vec{r} uniformly from the unit n-dimensional sphere, sample each of its components from a standard normal distribution. The resulting vector has a spherically symmetric distribution, so it is enough to then normalize it.

Lemma 17.6 For any distinct $i, j \in V$, the probability that i and j are separated by the cut is $\theta_{i j} / \pi$, where $\theta_{i j}$ is the angle between \vec{v}_{i} and \vec{v}_{j} in the vector program solution.

Proof: Let \vec{s} be the projection of \vec{r} onto the plane containing \vec{v}_{i} and \vec{v}_{j}. Then $\vec{r}-\vec{s}$ is perpendicular to both \vec{v}_{i} and \vec{v}_{j}, so

$$
\begin{aligned}
\vec{v}_{i} \cdot \vec{r} & =\vec{v}_{i} \cdot(\vec{s}+\vec{r}-\vec{s}) \\
& =\left(\vec{v}_{i} \cdot \vec{s}\right)+\vec{v}_{i} \cdot(\vec{r}-\vec{s}) \\
& =\vec{v}_{i} \cdot \vec{s}
\end{aligned}
$$

Figure 17.2: Vectors \vec{v}_{i} and \vec{v}_{j} are separated by the dashed line perpendicular to \vec{r} whenever \vec{s} lies in either of the two shaded regions, each subtending an angle of $\theta_{i j}$.

Similarly, $\vec{v}_{j} \cdot \vec{r}=\vec{v}_{j} \cdot \vec{s}$. Consider expressing \vec{v}_{i}, \vec{v}_{j}, and \vec{s} using polar coordinates. Without loss of generality, \vec{v}_{i} has an angular coordinate of $0, \vec{v}_{j}$ has angular coordinate $\theta_{i j}$, and \vec{s} has angular coordinate ϕ. Now \vec{s} separates \vec{v}_{i} and \vec{v}_{j} if and only if $\pi / 2 \leq \phi \leq \pi / 2+\theta_{i j}$ or $3 \pi / 2 \leq \phi \leq 3 \pi / 2+\theta_{i j}$. Because \vec{r} has a spherically symmetric distribution on the n-dimensional sphere, the angular coordinate of \vec{s} is uniformly distributed in $[0,2 \pi)$. Thus the above condition is satisfied with probability $2 \cdot \theta_{i j} / 2 \pi=\theta_{i j} / \pi$.

Theorem 17.7 The above algorithm is a 0.8785-approximation for Max-Cut.

Proof: We define

$$
\alpha=\frac{2}{\pi} \min _{0 \leq \theta \leq \pi} \frac{\theta}{1-\cos \theta} \approx 0.8785
$$

so that for any θ we have

$$
\frac{\theta}{\pi} \geq \alpha\left(\frac{1-\cos \theta}{2}\right)
$$

If $X_{i j}$ is the indicator random variable that is 1 if vertices $i, j \in V$ are separated by the cut and 0 otherwise, the expected weight of the cut produced by the above algorithm is

$$
\begin{aligned}
E[W] & =E\left[\sum_{(i, j) \in E} w_{i j} X_{i j}\right] \\
& =\sum_{(i, j) \in E} w_{i j} \frac{\theta_{i j}}{\pi} \\
& \geq \alpha \cdot \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-\cos \theta_{i j}\right) \\
& =\alpha \cdot \frac{1}{2} \sum_{(i, j) \in E} w_{i j}\left(1-\vec{v}_{i} \cdot \vec{v}_{j}\right) \\
& =\alpha \cdot Z_{\mathrm{VP}} \geq \alpha \cdot \mathrm{OPT}_{\mathrm{MC}} .
\end{aligned}
$$

We use the fact that $\vec{v}_{i} \cdot \vec{v}_{j}=\left\|\vec{v}_{i}\right\| \cdot\left\|\vec{v}_{j}\right\| \cdot \cos \theta_{i j}$, and $\left\|\vec{v}_{i}\right\|=\left\|\vec{v}_{j}\right\|=1$.
Theorem 17.8 (Hasdard, 1997) Unless $\mathrm{P}=\mathrm{NP}$, Max-Cut has no β-approximation where $\beta>16 / 17 \approx$ 0.941 .

Theorem 17.9 Assuming the Unique Games Conjecture (UGC), there is no $(\alpha+\varepsilon)$-approximation for MaxCut.

17.3 Max-2SAT

The Max-2SAT problem is concerned with logical formulae in 2-conjunctive normal form (2-CNF), which is a formula like:

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{2}\right) \wedge \cdots
$$

There are n literals x_{i}, \ldots, x_{n} and m clauses in the conjunction, and each clause is the disjunction of at most two literals and their negations. The Max-2SAT problem is to find an assignment of truth values to the literals that maximizes the number of satisfied clauses; it is NP-hard.

The natural linear program relaxation of the problem has an integrality gap of $4 / 3$, which is no better than random assignment. Instead, we look at an SDP relaxation:

$$
\begin{array}{ll}
y_{i}= \pm 1, & \text { for } i=0, \ldots, m \\
y_{0}=y_{i}, & \\
\text { if and only if } x_{i} \text { is true. }
\end{array}
$$

To define the objective function, we want each clause C to have a value $v(C)$ that is 1 if the clause is satisfied, and 0 otherwise:

$$
\begin{array}{rlrl}
v\left(x_{i}\right) & =\frac{1+y_{i} y_{0}}{2}, & & \\
v\left(\bar{x}_{i}\right) & =\frac{1-y_{i} y_{0}}{2} & \text { for clauses of one variable. } \\
v\left(x_{i} \vee x_{j}\right) & =1-v\left(\bar{x}_{i}\right) v\left(\bar{x}_{j}\right) & \\
& =1-\frac{1-y_{i} y_{0}}{2} \cdot \frac{1-y_{j} y_{0}}{2} & \text { for clauses of two variables. } \\
& =\frac{3+y_{i} y_{0}+y_{j} y_{0}-y_{i} y_{j} y_{0}^{2}}{4} & \\
& =\frac{1+y_{i} y_{0}}{4}+\frac{1+y_{j} y_{0}}{4}+\frac{1-y_{i} y_{j}}{4} & \\
v\left(\bar{x}_{i} \vee x_{j}\right) & =\frac{1-y_{i} y_{0}}{4}+\frac{1+y_{j} y_{0}}{4}+\frac{1+y_{i} y_{j}}{4} \\
v\left(x_{i} \vee \bar{x}_{j}\right) & =\frac{1+y_{i} y_{0}}{4}+\frac{1-y_{j} y_{0}}{4}+\frac{1+y_{i} y_{j}}{4} & \\
v\left(\bar{x}_{i} \vee \bar{x}_{j}\right) & =\frac{1-y_{i} y_{0}}{4}+\frac{1-y_{j} y_{0}}{4}+\frac{1-y_{i} y_{j}}{4} &
\end{array}
$$

We see that the terms in the value function are of the form $c\left(1+y_{i} y_{j}\right)$ or $c\left(1-y_{i} y_{j}\right)$, so by collecting the coefficients of like terms we can write the objective function as:

$$
\max \sum_{0 \leq i, j \leq n} a_{i j}\left(1+y_{i} y_{j}\right)+b_{i j}\left(1-y_{i} y_{j}\right), \quad y_{i}= \pm 1
$$

As we did before for MAX CUT, we relax the above into a vector program:

$$
\max \sum_{0 \leq i, j \leq n} a_{i j}\left(1+\vec{v}_{i} \cdot \vec{v}_{j}\right)+a_{i j}\left(1-\vec{v}_{i} \cdot \vec{v}_{j}\right), \quad v_{i} \in \mathbb{R}^{n+1}, \vec{v}_{i} \cdot \vec{v}_{i}=1
$$

VP Max-2SAT Rounding
let $\vec{v}_{0}, \ldots, \vec{v}_{n} \leftarrow$ optimal solution to above vector program.
let $\vec{r} \leftarrow$ uniformly random from the unit n-sphere.
let $y_{i} \leftarrow 1$ if $\vec{v}_{i} \cdot \vec{r} \geq 0, y_{i} \leftarrow 0$ otherwise.

4 let $x_{i} \leftarrow$ True if and only if $y_{i}=y_{0}$.

Theorem 17.10 The above algorithm is a 0.8785-approximation for Max-2SAT.

Proof: The expected weight of a cut produced by the above algorithm is

$$
E[W]=\sum_{0 \leq i, j \leq n} a_{i j} P\left[y_{i}=y_{j}\right]+b_{i j} P\left[y_{i} \neq y_{j}\right]
$$

From the argument given for Max-Cut above, we have

$$
\begin{aligned}
& P\left[y_{i} \neq y_{j}\right]=\theta_{i j} / \pi \geq \alpha\left(1-\cos \theta_{i j}\right) / 2 \\
& P\left[y_{i}=y_{j}\right]=1-\theta_{i j} / \pi \geq \alpha\left(1-\cos \theta_{i j}\right) / 2
\end{aligned}
$$

Thus

$$
E[W] \geq \alpha Z_{\mathrm{SDP}} \approx 0.8785 Z_{\mathrm{SDP}}
$$

Note: A result of Livnat, Lewin, and Zwick (2002) improves the approximation ratio to 0.940 . There is also an upper bound on the ratio of 0.943 .

