11.1 An LP Rounding Algorithm for the Multiway Cut Problem

In the last lecture, we introduced an LP relaxation and the corresponding LP rounding algorithm for the Multiway Cut problem.

11.1.1 Recall: Definition and the Linear Program

Definition 1 Multiway Cut Problem: Given an undirected graph $G=(V, E)$, a cost function $c: E \rightarrow \mathbb{Q}^{+}$ on edges, and k distinguished terminals, $s_{1}, s_{2}, \ldots, s_{k}$, where $s_{i} \in V$, for all $i=1,2, \ldots, k$, the goal is to find a minimum-cost set of edges, $E^{\prime} \subseteq E$, whose removal disconnects all terminals from each other.

The linear program (LP) of the Multiway Cut problem we talked about in the last lecture is as follows:

$$
\begin{array}{rll}
\operatorname{minimize} & \sum_{e=(u, v) \in E} c_{e} \cdot\left\|x_{u}-x_{v}\right\|_{1} & \tag{11.1}\\
\text { subject to } & x_{s_{i}}=e_{i} & i=1,2, \ldots, k, \\
& x_{u} \in \Delta_{k} & \forall u \in V .
\end{array}
$$

where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ is the vector with 1 in the i th coordinate and zeros elsewhere, and Δ_{k} is the k-simplex, i.e., $\Delta_{k}=\left\{x \in \mathbb{R}^{k} \mid \sum_{i=1}^{k} x^{i}=1\right\}$.

11.1.2 Recall: The Randomized Rounding Algorithm

For any $r \geq 0$ and $1 \leq i \leq k$, let $B\left(s_{i}, r\right)$ be the set of vertices in a ball of radius r in the ℓ_{1}-metric around s_{i}, that is, $B\left(s_{i}, r\right)=\left\{u \in V \left\lvert\, \frac{1}{2}\left\|x_{s_{i}}-x_{u}\right\|_{1} \leq r\right.\right\}$. Note that $B\left(s_{i}, 1\right)=V$ for all i. Then, as we introduced in the last lecture, the following algorithm MWC2 is a randomized rounding algorithm for the Multiway Cut problem.

```
Algorithm MWC2: LP Rounding Algorithm for the Multiway Cut Problem
    1. Let \(x^{*}\) be an optimal fractional solution to (11.1)
    2. \(C_{i} \leftarrow \emptyset\) for all \(1 \leq i \leq k\)
    3. Pick \(r \in(0,1)\) uniformly at random
    4. Pick a random permutation \(\pi\) of \(\{1,2, \ldots, k\}\)
    5. for \(i \leftarrow 1\) to \(k-1\) do
    6. \(\quad C_{\pi(i)} \leftarrow B\left(s_{\pi(i)}, r\right)-\bigcup_{j<i} C_{\pi(j)}\)
    7. \(C_{\pi(k)} \leftarrow V-\bigcup_{j<k} C_{\pi(j)}\)
    8. return \(F=\bigcup_{i=1}^{k} \delta\left(C_{i}\right)\)
```


11.1.3 Analysis of the Randomized Rounding Algorithm

Lemma 1 For each $e=(u, v)$, the probability of e belonging to the cut, i.e., $\operatorname{Pr}[e$ is in cut $] \leq \frac{3}{4}\left\|x_{u}-x_{v}\right\|_{1}$.
Lemma 1 implies the following theorem and we will prove the lemma later.
Theorem 1 Algorithm MWC2 is a randomized $\frac{3}{2}$-approximation algorithm for the multiway cut problem.
Proof. Let W be a random variable denoting the value of the cut, and Z_{e} be a $0-1$ variable which is 1 if e is in the cut, so that $W=\sum_{e \in E} c_{e} Z_{e}$. Let OPT be the optimum solution of the LP. Then, we have

$$
\begin{aligned}
E[W]=E\left[\sum_{e \in E} c_{e} Z_{e}\right]=\sum_{e \in E} c_{e} E\left[Z_{e}\right] & =\sum_{e \in E} c_{e} \operatorname{Pr}[e \text { is in cut }] \\
& \leq \sum_{e=(u, v) \in E} c_{e} \frac{3}{4}\left\|x_{u}-x_{v}\right\|_{1} \quad \triangleleft \text { by Lemma } 1 \\
& =\frac{3}{2} \cdot \frac{1}{2} \sum_{e=(u, v) \in E} c_{e}\left\|x_{u}-x_{v}\right\|_{1} \\
& =\frac{3}{2} \cdot \mathrm{OPT} .
\end{aligned}
$$

Before proving Lemma 1, we first prove the following two lemmas.
Lemma 2 For any index ℓ and any two vertices $u, v \in V,\left|x_{u}^{\ell}-x_{v}^{\ell}\right| \leq \frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1}$.
Proof. Without loss of generality, assume that $x_{u}^{\ell} \geq x_{v}^{\ell}$. Then

$$
\left|x_{u}^{\ell}-x_{v}^{\ell}\right|=x_{u}^{\ell}-x_{v}^{\ell}=\left(1-\sum_{j \neq \ell} x_{u}^{j}\right)-\left(1-\sum_{j \neq \ell} x_{v}^{j}\right)=\sum_{j \neq \ell}\left(x_{v}^{j}-x_{u}^{j}\right) \leq \sum_{j \neq \ell}\left|x_{u}^{j}-x_{v}^{j}\right|
$$

Add $\left|x_{u}^{\ell}-x_{v}^{\ell}\right|$ to both sides, we have

$$
2\left|x_{u}^{\ell}-x_{v}^{\ell}\right| \leq\left\|x_{u}-x_{v}\right\|_{1} \Rightarrow\left|x_{u}^{\ell}-x_{v}^{\ell}\right| \leq \frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1} .
$$

Lemma $3 u \in B\left(s_{i}, r\right) \Leftrightarrow 1-x_{u}^{i} \leq r$.

Proof.

$$
\begin{aligned}
u \in B\left(s_{i}, r\right) & \Leftrightarrow \frac{1}{2}\left\|x_{s_{i}}-x_{u}\right\|_{1} \leq r \\
& \equiv \frac{1}{2} \sum_{j=1}^{k}\left|x_{s_{i}}^{j}-x_{u}^{j}\right| \leq r \\
& \equiv \frac{1}{2} \sum_{j=i} x_{u}^{j}+\frac{1}{2}\left(1-x_{u}^{i}\right) \leq r \\
& \equiv 1-x_{u}^{i} \leq r . \\
& \triangleleft \text { since } \sum_{j=i} x_{u}^{j}=1-x_{u}^{i}
\end{aligned}
$$

Now we can prove Lemma 1 based on the above two lemmas.
Proof. Consider an edge $e=(u, v)$, define the following two events:

- Event S_{i} : we say that index i settles e if i is the first index such that at least one of $u, v \in B\left(s_{\pi(i)}, r\right)$;
- Event X_{i} : we say that index i cuts e if exactly one of $u, v \in B\left(s_{\pi(i)}, r\right)$.

Then, we have $\operatorname{Pr}[e$ is in cut $]=\sum_{i=1}^{k} \operatorname{Pr}\left[S_{i} \wedge X_{i}\right]$. By Lemma 3, we get

$$
\operatorname{Pr}\left[X_{i}\right]=\operatorname{Pr}\left[\min \left\{1-x_{u}^{i}, 1-x_{v}^{i}\right\} \leq r<\max \left\{1-x_{v}^{i}, 1-x_{u}^{i}\right\}\right]=\left|x_{u}^{i}-x_{v}^{i}\right|
$$

Let $\ell=\arg \min _{i}\left\{1-x_{u}^{i}, 1-x_{v}^{i}\right\}$, that is, s_{ℓ} is the nearest terminal to either u or v. Then we can claim that index $i \neq \ell$ cannot settle $e=(u, v)$ if ℓ comes before i in π, since by Lemma 3, if at least one of $u, v \in B\left(s_{\pi(i)}, r\right)$, then at least one of $u, v \in B\left(s_{\pi(\ell)}, r\right)$. Note that $\operatorname{Pr}[\ell$ comes after $i]=\frac{1}{2}$. Thus,

- for $\ell \neq i$, we have

$$
\begin{aligned}
\operatorname{Pr}\left[S_{i} \wedge X_{i}\right] & =\frac{1}{2} \operatorname{Pr}\left[S_{i} \wedge X_{i} \mid \ell \text { comes after } i\right]+\frac{1}{2} \operatorname{Pr}\left[S_{i} \wedge X_{i} \mid \ell \text { comes before } i\right] & \\
& \leq \frac{1}{2} \operatorname{Pr}\left[X_{i} \mid \ell \text { comes after } i\right]+0 & \\
& =\frac{1}{2} \operatorname{Pr}\left[X_{i}\right] & \triangleleft X_{i} \text { is independent of } \pi \\
& =\frac{1}{2}\left|x_{u}^{i}-x_{v}^{i}\right| . &
\end{aligned}
$$

- for $\ell=i$, we have

$$
\operatorname{Pr}\left[S_{\ell} \wedge X_{\ell}\right] \leq \operatorname{Pr}\left[X_{\ell}\right]=\left|x_{u}^{\ell}-x_{v}^{\ell}\right| .
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}[e \text { is in cut }]=\sum_{i=1}^{k} \operatorname{Pr}\left[S_{i} \wedge X_{i}\right] & \leq\left|x_{u}^{\ell}-x_{v}^{\ell}\right|+\frac{1}{2} \sum_{i \neq \ell}\left|x_{u}^{i}-x_{v}^{i}\right| \\
& =\frac{1}{2}\left|x_{u}^{\ell}-x_{v}^{\ell}\right|+\frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1} \\
& \leq \frac{1}{4}\left\|x_{u}-x_{v}\right\|_{1}+\frac{1}{2}\left\|x_{u}-x_{v}\right\|_{1} \quad \triangleleft \text { by Lemma } 2 \\
& =\frac{3}{4}\left\|x_{u}-x_{v}\right\|_{1} .
\end{aligned}
$$

11.1.4 Best Known Results

Theorem 2 There is a Multiway Cut randomized approximation algorithm with an approximation guarantee of 1.3438 . [K04]

Theorem 3 There exists a (1.32388- $\frac{1}{2 k}$)-approximation algorithm for the Multiway Cut problem. [BNS13]
Theorem 4 There is an algorithm that provides a 1.2965-approximation for the Multiway Cut problem. [SV14]

11.2 The Multi-Cut Problem

Definition 2 Multi-Cut Problem: Given an undirected graph $G=(V, E)$, a cost function $c: E \rightarrow \mathbb{Q}^{+}$on edges, and k distinguished source-sink pairs of vertices, $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$, where $s_{i}, t_{i} \in V$, for all $i=1,2, \ldots, k$, the goal is to find a minimum-cost set of edges, $E^{\prime} \subseteq E$, whose removal disconnects all pairs of s_{i}, t_{i}, for every $i=1,2, \ldots, k$. Note that there can be paths connecting s_{i} and s_{j} or s_{i} and t_{j} for $i \neq j$.

Let \mathcal{P}_{i} be the set of all paths from s_{i} to t_{i}. Then an LP of this problem is as follows:

$$
\begin{align*}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} \tag{11.2}\\
\text { subject to } & \sum_{e \in P} x_{e} \geq 1, \quad \forall P \in \mathcal{P}_{i}, 1 \leq i \leq k, \\
& x_{e} \geq 0, \quad \forall e \in E .
\end{align*}
$$

Although this LP has exponentially many constraints, we can solve it in polynomial time by considering a polynomial-time separation oracle, which is defined as follows:

Separation oracle: Given a solution of x_{e} values, either say it is indeed a feasible solution to the LP or, if it is infeasible, find a violating constraint.

The separation oracle for this LP works as follows: Consider x_{e} as the length of each edge in G, compute the length of the shortest $s_{i}-t_{i}$ path for each $i, 1 \leq i \leq k$. If for each i, the length of the shortest $s_{i}-t_{i}$ path is at least 1 , then the length of every path $P \in \mathcal{P}_{i}$ is at least 1 , indicating that the solution is feasible; if for some i, the length of the shortest $s_{i}-t_{i}$ path P is less than 1 , we return it as a violated constraint, since we have $\sum_{e \in P} x_{e}<1$ for $P \in \mathcal{P}_{i}$.

11.2.1 The Region Growing Algorithm

Now we introduce an approximation algorithm based on a region growing method presented by Garg, Vazirani, and Yannakakis (GVY) for solving this problem. First, we restate this problem as a pipe system with some denotations as follows:

- x_{e} : length of a pipe
- c_{e} : cross-sectional area of a pipe
- $c_{e} x_{e}$: volume of a pipe
- $d_{x}(u, v)$: length of the shortest $u-v$ path with edge length x_{e}
- $B_{x}(v, r)=\left\{u \mid d_{x}(v, u) \leq r\right\}$: ball of radius r around vertex v

The LP objective is then the minimum-volume pipe system such that for every $s_{i}-t_{i}$ path, s_{i} and t_{i} are at least 1 unit apart, i.e., $d_{x}\left(s_{i}, t_{i}\right) \geq 1$. See Figure 11.1 for an illustration of a pipe system.

Let V^{*} be the optimum total volume of the pipes to the LP, we define the volume of pipes within distance r of s_{i} plus an extra term $\frac{V^{*}}{k}$ as follows:

$$
V_{x}\left(s_{i}, r\right)=\frac{V^{*}}{k}+\sum_{e=(u, v), u, v \in B_{x}\left(s_{i}, r\right)} c_{e} x_{e}+\sum_{e=(u, v), u \in B_{x}\left(s_{i}, r\right), v \notin B_{x}\left(s_{i}, r\right)} c_{e}\left(r-d_{x}\left(s_{i}, u\right)\right)
$$

Figure 11.1: An illustration of a pipe system.

Let $\delta(S)$ be the set of edges between S and $V \backslash S$ for all $S \subset V$. The following algorithm GVY is a region growing algorithm for the Multi-Cut problem.

```
Algorithm GVY: The Region Growing Algorithm for the Multi-Cut Problem
    1. \(C \leftarrow \emptyset\)
    2. Let \(x\) be an optimal fractional solution to (11.2)
    3. while there is a connected \(s_{i}, t_{i}\) do
    4. \(\quad S \leftarrow B_{x}\left(s_{i}, r\right)\) for some \(r<\frac{1}{2}\)
    5. \(C \leftarrow C \cup \delta(S)\)
    6. \(V \leftarrow V \backslash S\)
        \(\triangleleft \delta(S)\) Remove the ball from the \(G\)
    7. return \(C\)
```


11.2.2 Analysis of the GVY Region Growing Algorithm

Lemma 4 Algorithm GVY terminates in polynomial time.

Proof. In each iteration of the while loop, lines 4 and 5 indicate that $\delta(S)$ will separate at least one pair of $\left(s_{i}, t_{i}\right)$, thus there are at most k iterations. Therefore, algorithm GVY terminates in polynomial time.

Lemma 5 Algorithm GVY returns a Multi-Cut.

Proof. If algorithm GVY does not return a Multi-Cut, then there must be some $s_{j}-t_{j}$ pair in a removed ball. Thus, we show that no $s_{j}-t_{j}$ pair remains connected within a ball that is removed by contradiction. If $\exists s_{j}, t_{j} \in B_{x}\left(s_{i}, r\right)$ for $r<\frac{1}{2}$, then $d_{x}\left(s_{j}, t_{j}\right) \leq 2 r<1$, which contradicts the constraints for s_{j}, t_{j}.

Let V^{*} be the optimum total volume of the pipes to the LP, then as we introduced in the last lecture, define:

$$
\begin{aligned}
V_{x}\left(s_{i}, r\right) & =\frac{V^{*}}{k}+\sum_{e=(u, v), u, v \in B_{x}\left(s_{i}, r\right)} c_{e} x_{e}+\sum_{e=(u, v), u \in B_{x}\left(s_{i}, r\right), v \notin B_{x}\left(s_{i}, r\right)} c_{e}\left(r-d_{x}\left(s_{i}, u\right)\right), \\
C_{x}\left(s_{i}, r\right) & =\sum_{e=(u, v) \in \delta\left(B_{x}\left(s_{i}, r\right)\right)} c_{e}
\end{aligned}
$$

Observation: $V_{x}\left(s_{i}, r\right)$ is an increasing function of r. It is also piece-wise linear with possible discontinuity at values of r when the ball includes a new vertex (see Figure 11.2 for an example of the discontinuity) and
differentiable between values r in which vertices are added to the ball.

Figure 11.2: An example of when the function $V_{x}\left(s_{i}, r\right)$ of r is discontinuous. The value of $V_{x}\left(s_{i}, r\right)$ can jump when a ball is growing with a radius from r_{1} to r_{2} and there is an edge between u_{2} and v_{2} which have the same distance $\left(r_{2}\right)$ to s_{i}, since we will also need to add the volume of pipe $\left(u_{2}, v_{2}\right)$ at the moment when r reaches r_{2}.

So, we have

$$
\frac{\mathrm{d} V_{x}\left(s_{i}, r\right)}{\mathrm{d} r}=C_{x}\left(s_{i}, r\right)
$$

Lemma 6 There is some $r<\frac{1}{2}$ (and we can find it in polynomial time) such that $\frac{C_{x}\left(s_{i}, r\right)}{V_{x}\left(s_{i}, r\right)} \leq 2 \ln (k+1)$.
Lemma 6 implies the following theorem and we will prove the lemma later.
Theorem 5 Algorithm $G V Y$ is a $4 \ln (k+1)$-approximation algorithm for the Multi-Cut problem.
Proof. When we cut a ball $B_{x}\left(s_{i}, r\right)$, charging the cost of $\delta\left(B_{x}\left(s_{i}, r\right)\right)$ to the volume of $B_{x}\left(s_{i}, r\right)$, by Lemma 6 , we have

$$
\begin{aligned}
\sum_{e \in C} c_{e}=\sum_{i=1}^{k} \sum_{e \in C_{i}} c_{e} & \leq 2 \ln (k+1) \sum_{s_{i}, r \text { selected }} V_{x}\left(s_{i}, r\right) \\
& \leq 2 \ln (k+1)\left(V^{*}+k \cdot \frac{V^{*}}{k}\right) \\
& =4 \ln (k+1) V^{*}
\end{aligned}
$$

Now we prove Lemma 6.
Proof. Say we choose $r \in\left[0, \frac{1}{2}\right)$ uniformly at random. Recall the mean-value theorem: for a function $f(\cdot)$ continuous on an interval $[a, b]$ and differentiable on $(a, b), \exists c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ (see Figure 11.3 for the proof).

Let $f(r)=\ln V(r), f^{\prime}(r)=\frac{\mathrm{d} \ln V(r)}{\mathrm{d} r}=\frac{C(r)}{V(r)}$, where $V(r)=V_{x}\left(s_{i}, r\right), C(r)=C_{x}\left(s_{i}, r\right)$. Note that $V\left(\frac{1}{2}\right) \leq V^{*}+\frac{V^{*}}{k}$ and $V(0)=\frac{V^{*}}{k}$. Thus, $\exists r_{0}$ such that

$$
f^{\prime}\left(r_{0}\right) \leq \frac{\ln V\left(\frac{1}{2}\right)-\ln V(0)}{\frac{1}{2}-0} \leq 2\left(\ln \left(V^{*}+\frac{V^{*}}{k}\right)-\ln \frac{V^{*}}{k}\right)=2\left(\frac{\ln \left(V^{*}+\frac{V^{*}}{k}\right)}{\ln \frac{V^{*}}{k}}\right)=2 \ln (k+1)
$$

Figure 11.3: Mean-value theorem

Consider vertices based on their increasing distances from $s_{i}: s_{i}=v_{1}, v_{2}, \ldots, v_{p}, 0=r_{0} \leq r_{1} \leq \cdots \leq r_{p}=\frac{1}{2}$. By contradiction, suppose for all $r \in\left[r_{j}, r_{j+1}\right), \frac{C(r)}{V(r)}>2 \ln (k+1)$. Then, we have

$$
\begin{aligned}
& \int_{r_{j}}^{r_{j+1}^{-}} \frac{\mathrm{d} V(r)}{\mathrm{d} r} \cdot \frac{1}{V(r)} \mathrm{d} x>\int_{r_{j}}^{r_{j+1}^{-}} 2 \ln (k+1) \mathrm{d} r \\
\Rightarrow & \ln V\left(r_{j+1}^{-}\right)-\ln V\left(r_{j}\right)>2 \ln (k+1)\left(r_{j+1}^{-}-r_{j}\right) .
\end{aligned}
$$

For all $j=0,1, \ldots, p-1$, we have

$$
\begin{gathered}
\ln V\left(r_{1}\right)-\ln V\left(r_{0}\right)>2 \ln (k+1)\left(r_{1}-r_{0}\right) \\
\vdots \\
\ln V\left(r_{p}\right)-\ln V\left(r_{p-1}\right)>2 \ln (k+1)\left(r_{p}-r_{p-1}\right) .
\end{gathered}
$$

Sum over all j, we get

$$
\begin{aligned}
& \ln V\left(r_{p}\right)-\ln V\left(r_{0}\right)>2 \ln (k+1)\left(r_{p}-r_{0}\right) \\
& \Rightarrow \ln V\left(\frac{1}{2}\right)-\ln V(0)>2 \ln (k+1)\left(\frac{1}{2}-0\right) \\
& \Rightarrow \ln V\left(\frac{1}{2}\right)>\ln (k+1)+\ln \frac{V^{*}}{k} \\
&=\ln \frac{(k+1) V^{*}}{k} \\
&=\ln \left(V^{*}+\frac{V^{*}}{k}\right) \\
& \Rightarrow V\left(\frac{1}{2}\right)>V^{*}+\frac{V^{*}}{k}
\end{aligned}
$$

which cannot happen. Therefore, there must be an r such that $\frac{C(r)}{V(r)} \leq 2 \ln (k+1)$.
To find such r, note that between r_{j} and $r_{j+1}^{-}, C(r)$ is constant while $V(r)$ is non-decreasing. So, the minimum value of $\frac{C(r)}{V(r)}$ occurs when $r=r_{j+1}^{-}$. So, it is enough to check the ratio $\frac{C(r)}{V(r)}$ for $r=r_{j+1}-\epsilon$. So, we only need to check $p \leq n$ vertices and their distances from s_{i}. Thus, we can find such r in polynomial time.

Therefore, algorithm GVY is an $O(\log k)$-approximation algorithm for the Multi-Cut problem.

References

WS11 D. P. Williamson and D. B. Shmoys, The design of approximation algorithms, Cambridge University Press, 2011.

K04 D. R. Karger, P. Klein, C. Stein, M. Thorup and N. E. Young, Rounding algorithms for a geometric embedding of minimum multiway cut, Mathematics of Operations Research, 2004, 29(3):436461.

BNS13 N. Buchbinder, J. S. Naor and R. Schwartz, Simplex partitioning via exponential clocks and the multiway cut problem, In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, 2013, pp. 535-544, ACM.

SV14 A. Sharma and J. Vondrák, Multiway cut, pairwise realizable distributions, and descending thresholds, In Proceedings of the 46 th Annual ACM Symposium on Theory of Computing, 2014, pp. 724-733, ACM

