
, 5

CMPUT 675: Approximation Algorithms Fall 2013

Lecture 4, 5 (Sep 17, Sep 19, 2013): Set Cover, LP Duality, 0-1 Knapsack
Lecturer: Mohammad R. Salavatipour Scribe: Afshin Arefi, Based on older notes

This week we see two other algorithms for approximating set cover: one using randomized rounding of an LP
relaxation and the other using Primal-Dual schema. We will also see how to design an FPTAS for the 0/1
knapscak problem.

4.1 Set Cover using Randomized Rounding

In this section we consider another method for solving the set cover problem approximately. The method uses
randomized rounding of the solution obtained from an LP relaxation of set cover. The basic idea behind this
algorithm is first to solve the LP relaxation for the set cover problem. We can think of the solution ~x as a
probability to either select a set or not. Note that the output of the algorithm might not be a set cover. But
the probability to get a set cover can be increased by repeating the same procedure multiple times.

For set cover corresponding LP is

minimize :

m∑
i=1

c(Si)xSi

subject to :
∑
e∈Si

c(Si)xSi
≥ 1, ∀e ∈ U

xSi
≥ 0,

Let α be a constant s.t. e−α lnn < 1/(4n).

Algorithm: Set cover by randomized rounding

1. Let x∗ be an optimum solution to the LP relaxation for set cover
2. For each set Si, set x̂Si

= 1 with probability x∗Si
.

3. Let C = {Si|x̂Si
}4. Repeat the above procedure α log n times and return the union of all sets C generated.

First we bound the expected cost of the set C computed in each iteration of step 3:

E [cost (C)] =
∑
Si

c(Si)x
∗
si = z∗ (4.1)

where z∗ is the optimal value of the LP solution. But the problem with this set is that the solution might not be
a set cover by itself. To address this, we repeat this procedure α lnn times; we will show that with sufficiently
high probability the returned solutionis a good set cover. That is, if Ci is the collection of sets that are selected
at the ith iteration of this algorithm, then we would have the final answer as C = ∪αi=1ci.

Consider an arbitrary element ej and WLOG assume that it belongs to sets S1, . . . , Sk. Since we start from a
feasible solution, we must have x∗S1

+ . . .+ x∗Sk
≥ 1; in the worst case we should have x∗S1

+ x∗S2
+ . . .+ x∗Sk

= 1.

4-1

4-2 Lecture 4, 5: Set Cover, LP Duality, 0-1 Knapsack

What is the probability that none of the corresponding k sets be selected given the probabilities of x∗Si
’s? The

following lemma (whose proof is starightforward) suggests that this probability is the highest when all the x∗’s
are equal.

Lemma 1 Given x1 + . . . + xk = 1, if we select each Si with probability x∗i , the probability that no Si will be
selected is highest (worst case) when all x∗i = 1

k .

Thus the probabilty that an element ej is not covered in the i’th iteration of this algorithm is:

Pr [ej /∈ Ci] ≤
(

1− 1

k

)k
≤ e−1 (4.2)

Now one way to increase the probability to get a set cover is to repeat the algorithm α lnn times and take union
of all the C’s i.e. sets selected in each iteration; this is exactly what we do. Thus the probablity of an element
not covered after α lnn iteration is

Pr

(
ej /∈

α lnn⋃
i=1

Ci

)
≤ e−α lnn (4.3)

=
1

4n
(4.4)

Using union bound, the probability that the result after α lnn iterations is not a set cover is at most

Pr

(
α⋃
i=1

Ci is not a set cover

)
≤ n

4n
(4.5)

= 1/4. (4.6)

The expected cost for the probablistic rounding set cover after α lnn iterations is

E

[
cost

(
α⋃
i=1

Ci

)]
= α lnn · z∗ (4.7)

= O (log n · opt) (4.8)

Using Markov’s inequality, Pr[X ≥ t] ≤ E[X]
t :

Pr [cost(C) > 4α · z∗] ≤ 1

4

Therefore, with a probability greater than or equal to 1
2 , we have a feasible solution with cost less than or equal

to 4α · z∗ which is in O(log n) ·OPT , where OPT is the cost of the optimal solution. To get better probability
it’s enough to repeat the algorithm a constant number of times and get the best answer.

4.2 Duality of Linear Program

Consider the following simple LP:

Lecture 4, 5: Set Cover, LP Duality, 0-1 Knapsack 4-3

minimize 10x1 + 6x2 + 4x3 (4.9)

subject to: 2x1 + x2 − x3 ≥ 2 (4.10)

x1 + x2 + x3 ≥ 3 (4.11)

x1, x2, x3 > 0 (4.12)

Let z∗ denote the optimum value of this linear program. Consider the question, ”Is z∗ at most 50?” A Yes
certificate for this question, is a feasible solution with value at most 50, for example x = (1, 1, 1), since it
satisfies the two constraints of the problem, and the objective function value for this solution is 20. Thus, any
Yes certificate to this question provides an upper bound on z∗.

Now consider the following question: is z∗ ≥ 10? To answer this we need to find lower bounds for all feasible
solutions. We can obtain lower bounds by looking at the constraints. For instance, from constraint 4.10, and
because the coefficients of variables x1, x2, x3 are all smaller in the constraint with respect to those in the
objective function, it follows that 2 is a lower bound for z∗. By combining constraints 4.10 and 4.11 we obtain
that 3x1 + 2x2 + 0x3 ≥ 5 and therefore 5 is a new lower bound for z∗. In general, any linear combination of
these constraints could lead to a lower bound, as long as the final coefficients of the variables are not larger than
those in the objective function. For instance, using a y1 factor of constraint 1 and y2 factor of constraint 4.11,
we get:

y1(2x1 + x2 − x3) ≥ 2y1
y2(x1 + x2 + x3) ≥ 3y2

There is a systematic way of obtaining the dual of any linear program; one is a minimization problem and the
other is a maximization problem. In general, for a primal LP of the form:

minimize
∑n
i=1 cixi

subject to
∑n
j=1 aijxj ≥ bi

xj ≥ 0

The dual has the form:

maximize
∑n
i=1 biyi

subject to
∑m
i=1 aijyi ≤ cj

yi ≥ 0

By construction, every feasible solution to the dual program gives a lower bound on the optimum value of the
primal. Also, every feasible solution to the primal program gives an upper bound on the optimal value of the
dual. Therefore, if we can find feasible solutions for the dual and the primal with matching objective function
value, then both solutions must be optimal.

Theorem 1 Weak Duality Theorem: If ~x and ~y are feasible solution for primal and dual then
∑n
j=1 cjxj ≥∑m

i=1 biyi.

4-4 Lecture 4, 5: Set Cover, LP Duality, 0-1 Knapsack

Proof.

n∑
j=1

cjxj ≥
n∑
j=1

(
m∑
i=1

aijyi

)
xj (4.13)

=

m∑
i=1

 n∑
j=1

aijxj

 yi (4.14)

≥
n∑
i=1

biyi (4.15)

Theorem 2 (Strong Duality Theorem) Primal of an LP has a finite optimum solution if and only if its
dual has finte optimum. Also if ~x∗ and ~y∗ are optimal for primal and dual then

∑n
j=1 cjxj =

∑n
i=1 biyi

The following theorem follows easily from the above theorems:

Theorem 3 (Complementary slackness condition) Let ~x and ~y be two feasible solutions for the primal
and dual. then ~x and ~y are both optimum iff the following two conditions hold:

1. Primal complementary slackness conditions
For each 1 ≤ j ≤ n: either xj = 0 or

∑m
i=1 aijyi = cj;

2. Dual complementary slackness conditions
For each 1 ≤ i ≤ m: either yi = 0 or

∑n
j=1 aijxj = bi.

Relaxed complementary slackness condition: Let ~x and ~y be the feasible solution for primal and dual.
Suppose that we have both primal and dual relaxed slackness conditions: for α ≥ 1 and β ≥ 1, if

• for each 1 ≤ j ≤ n either xj = 0 or
cj
α ≤

∑m
i=1 aijyi ≤ cj ; and

• for each 1 ≤ i ≤ m either yi = 0 or bi ≤
∑m
j=1 aijxj ≤ βbj ,

then
∑n
j=1 cjxj ≤ α · β

∑m
i=1 biyi.

4.3 Primal dual scheme

Previously mentioned LP based algorithms actually approximate the problem by solving the LP and computing
an integer solution from the LP solution. The general idea of primary-dual method is to start with a primal
infeasible and a dual feasible solution (usually the trivial solution ~x = 0 and ~y = 0). Then we iteratively improve
the feasibility of primal and optimality of dual. Primal is always extended integrally and at the end Primal is a
feasible solution. At each iteration, we use relaxed slackness conditions to help to find feasible solutions to the
primal.

Big advantage of Primal-Dual over rounding: we don’t have to solve LP (which is time consuming although
polynomial time solvable).

Lecture 4, 5: Set Cover, LP Duality, 0-1 Knapsack 4-5

4.3.1 primal dual applied to set cover

Consider the following LP relaxation for Set Cover and its dual:

minimize
∑
S∈S c(S)xS

subject to
∑
S:e∈S xS ≥ 1, ∀e ∈ U

xS ≥ 0

maximize
∑
e∈U ye

subject to
∑
S:e∈S ye ≤ c(S) ∀S ∈ S

ye ≥ 0

Note that the dual problem is a packing problem. We can say, we are going to pack stuff into elements so that
the total amount packed is maximized without overpacking any set.

Remark: The dual of a covering problem is a packing problem and the dual of a packing problem is a covering
problem. Packing problems are typically harder.

The frequency of each element e ∈ U in the set cover problem is the number of sets that contain that element e.
We use f to denote the maximum frequency. Our goal is to design a primal-dual f -approximation for set cover.

We start with a trivial solution of −→x = 0, −→y = 0. We try to satisfy the Primal complementary slackness
conditions:

∀S ∈ § : xS 6= 0⇒
∑
e∈S

ye = c(S).

If we find a pair of feasible solutions (x, y) that satisfy the above condition, because each xs > 0 has value 1,
we’ll have:

xs = 1⇒
∑
e∈S

ye = c(S).

In that case, the total cost of the solution will be:

∑
S∈S

c(S) · xS =
∑
S∈S

xS

(∑
e∈S

ye

)
≤

∑
e∈U

ye
∑
S:e∈S

≤
∑
e∈U

ye · f

≤ f · optLP

So it is enough to show how find such feasible primal solution. We call a set S for which the right-hand-side
inequality of the primal complementary slackness condition holds with equality a tight set (intuitively we cannot
pack more stuff into elements of that set).

The following is the PrimalDual Set Cover Algorithm.

1: ~x← 0, ~y ← 0
2: while not all elements are covered do
3: pick an uncovered element e, raise ye until some set goes tight
4: pick all tight sets and update ~x
5: declare all the elements in those sets as covered
6: endwhile
7: output the set cover ~x

Theorem 4 This algorithm is an f -approximation for set cover.

4-6 Lecture 4, 5: Set Cover, LP Duality, 0-1 Knapsack

Proof. Consider primal complementary slackness

if xSi > 0 then
∑
e∈Si

ye = C (Si) (4.16)

No if we find a easible solution to primal LP ~x and dual LP ~y ensuring that ~x is integer (i.e each xSi > 0 is 1)
then

if xSi = 0 then
∑
e∈Si

ye = C (Si) (4.17)

and total cost will be

∑
Si

cSi · xSi =
∑
Si

xSi

(∑
e∈Si

ye

)
(4.18)

≤
∑
e∈Si

ye
∑

Si:e∈Si

xSi (4.19)

≤
∑
e∈Si

ye · f where f is frequency of element (4.20)

≤ f · optLP (4.21)

4.4 0-1 Knapsack

The 0-1 knapsack problem can be described as, given a set of items, each having value vi and weight wi and a
knapsack of capacity B, find a subset of items that fit into the knapsack while maximizing their total value, i.e.:

Input: Set of items {1, ..., n}, each item has value vi and a weight wi, we have a knapsack with capacity B,
vi, wi, B ∈ Z+.
Goal: Find a subset S of items such that

∑
i∈S vi is maximum and

∑
i∈S wi ≤ B.

Here we present an FPTAS for knapsack. Clearly, if the weight of a single item is larger than B we can ignore
that item. So let’s assume ∀i : wi ≤ B.

The obvious greedy algorithm is to sort in non-increasing order of vi
wi

and pick the objects in this order.
Unfortunately this greedy algorithm has a bad solution. In fact, knapsack is an NP-hard optimization problem.
First we present a dynamic Programming algorithm for knapsack. Let V be the largest value among all items
and OPT be the value of an optimum solution. Clearly OPT ≤ nV. We have an n×(nV +1) table A. Let A[i, v]
be the smallest weight of a subset of items from {1, . . . , i} such that the value of the items is exactly equal to
v, if no such set exists then A[i, v] =∞. Then A[1, v] is easy to compute for any value v ∈ {1, . . . , nV } and

A[i, v] =

{
min{A[i− 1, v], A[i− 1, v − vi] + wi} if vi < v
A[i− 1, v] O.W.

This leads to the following algorithm:

The running time of this algorithm is O(n2 ·V). But we know that knapsack is NP-hard. So have we proved that
P=NP?! This is NOT polynomial in the size of input because V is not polynomial in size of vi’s (represented
in binary). We only need log V bits to represent V , so n2V is exponential in V . This is polynomial only if
the input is given in unary representation. For this reason, we call this algorithm a pseudo-polynomial time
algorithm.

Lecture 4, 5: Set Cover, LP Duality, 0-1 Knapsack 4-7

Dynamic Programming algorithm for Knapsack
V = max

1≤i≤n

Vi

for i = 1 to n do A[i, 0] = 0
for v = 1 to nV do

A[1, v] =

{
w1 if v1 = v
∞ otherwise

for i = 2 to n do
for v = 1 to nV do

if vi ≤ v then
A[i, v] = min{A[i− 1, v], A[i− 1, v − vi] + wi}

else
A[i, v] = A[i− 1, v]

Figure 4.1: Dynamic Programming Algorithm for Knapsack.

The main reason that Dynamic Programming is not polynomial time is that the values of items can be much
larger than n. If they were all polynomially bounded by n, then this algorithm would be polynomial time. We
are going to use this fact to design an FPTAS for knapsack. To do so, we are going to use only a polynomially
bounded segments of values that will depend on n and 1

ε (the error parameter). Then we will find a solution
(in polynomial time) that is at least (1− ε).OPT using dynamic programming.

4.4.1 FPTAS algorithm for 0-1 Knapsack

FPTAS algorithm for knapsack

Let k = εV
n .

for each item i let v
′

i =
⌊
vi
k

⌊
Run the above dynamic program with same weights wi but with value v

′

i.

Let S
′

be the solution of dynamic program, return S
′

Theorem 5 The above algorithm is an FPTAS for knapsack.

Proof. First note that the largest value V ′ in the new instance is

V
′

=

⌊
V

εV/n

⌋
(4.22)

=
n

ε
(4.23)

Thus the resulting time complexity of the algorithm is O
(
n3

ε

)
which is polynomial in both n and ε. Now we

prove the approximation ratio.

Let S be an optimum solution and opt be the value of S. For each item i: kv′i ≤ vi ≤ k(v′i + 1). Therefore:

vi − k ≤ kv′i (4.24)

and
vi ≥ kv′i (4.25)

4-8 Lecture 4, 5: Set Cover, LP Duality, 0-1 Knapsack

So by (4.24): OPT =
∑
i∈S vi ≤ k.

∑
i∈S v

′
i + kn.

and we know that value of S
′

is the best under v
′

i. Now∑
i∈S′

vi ≥ k
∑
i∈S′

v
′

i (4.26)

≥ k
∑
i∈S

v
′

i (4.27)

≥
∑
i∈S′

vi − nk (4.28)

= opt− εV (4.29)

≥ opt (1− ε) , (4.30)

since V ≤ OPT and therefoer εV ≤ εOPT.

4.4.2 Pseudo polynomial time algorithms and strong NP hard problems

An algorithm has pseudo-polynomial time algorithm if its running time is polynomial when the input is repre-
sented in Unary. A problem is strongly NP-hard if it has no pseudo-polynomial time algorithm unless P=NP.
The following theorem establishes a connection between having an FTPAS and having a pseudo-polynomial
time exact algorithm.

Theorem 6 Let |I| be the size of input in binary, |Iu| be the size of instance I of problem Π represented in
unary. Suppose that I is an NP hard minimization problem s.t. the objective function is integer for any instance
I and opt (I) ≤ P (|Iu|) where P is some poly function. Then if Π has an FPTAS then it is not strongly NP
hard and has a pseudo polynomial time algorithm.

Proof. Let A be and FPTAS for problem Π with time Q (|I| , ε) which is polynomial time in both input size
and ε. Let ε = 1

P (|Iu|) . Now the as it is assumed A is FPTAS thus

solution ≤ (1 + ε) opt (4.31)

=

(
1 +

1

P (|Iu|)

)
opt (4.32)

= opt +
opt

P (|Iu|)
(4.33)

< 1 + opt (4.34)

