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CMPUT 675: Approximation Algorithms Fall 2011

Lecture 21,22 (Nov 22&24, 2011): Label Cover, Hardness of Set Cover
Lecturer: Mohammad R. Salavatipour Scribe: based on older notes

Our goal from now (until the end of the course) is to present an Ω(logn)-hardness result for set cover. To
achieve this goal we need to define a few other problems and prove hardness results for them. The first one is
a variation of Max-3SAT.

21.0.1 Gap-Max-3SAT(5) problem

Given a 3SAT formula with the extra restriction that every variable belongs to 5 clauses.

Goal: To find the maximum number of clauses satisfied by an assignment.

Theorem 1 There is a gap preserving reduction form Max-3SAT to Max-3SAT(5).

Given a Max-3SAT(5) instance φ let Opt(φ) denote the number of clauses that can be satisfied by a truth
assignment. Then it is NP-hard to decide if:

• opt(φ) = m

• opt(φ) ≤ (1 − ǫ)m for some constant ǫ > 0.

21.0.2 Label Cover Problem

The label cover problem is a graph theoric modeling of a 2-pover 1-round proof system for NP. An instance of
label cover consists of the followings:

• G(V ∪W,E) is a bipartite graph.

• [N ] = {1...N}, [M ] = {1...M} are 2 sets of labels, [N ] for the vertices in V and [M ] for the vertices in W .

• {Πv,w}(v,w)∈E denotes a (partial) function on every edge (v, w) such that Πv,w : [M ] → [N ]

A labeling l : V → [N ],W → [M ] is said to cover edge (v, w) if Πv,w(l(w)) = l(v).

Goal: Given an instance of label cover, find a labeling that covers maximum fraction of the edge.

Theorem 2 Given an instance L(G,M = 7, N = 2, {Πv,w}) it is NP-hard to decide if

• opt(L) = 1, or

• opt(L) ≤ 1 − ǫ
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Proof. We use Theorem 1. Given a Max-3SAT(5) formula φ, we construct an instance L as follows.

Let the variables of φ be {x1, . . . , xn} and clauses be {C1, . . . , Cm}.

Define V = {x1...xn}, and W = {C1, . . . , Cm}, i.e. create a vertex in V for every variable of φ and a vertex in
W for every clause of φ. Two vertices xi and Cj are adjacent iff xi ∈ Cj . Note that the degree of every vertex
in V is 5, because each variable is in 5 clauses and the degree of every vertex in W is 3.

For Πv,w: V gets labels from {0, 1} and for every clause Cj ∈ V let [7] be the set of seven satisfying assignments
that a clause Cj can have. Then, Πxi,Cj

: [7] → [2] is basically the bijection of the assignment of variable xi in
the given satisfying assignment of Cj .

Example: if Cj = x1 ∨ x2 ∨ x3, then Πx1,Cj
(101) = 1 and Πx2,Cj

(101) = 0

If φ is satisfiable (i.e. a Yes instance), then there is a truth assignment satisfying all clauses. Consider the
labeling of xi’s defined by this truth assignment and also every clause (of course satisfied) has one of those seven
labels and these labels are consistent on every edge. This means, all the edges of L are covered. So opt(L) = 1.

Now assume that φ is a “no” instance (i.e. opt(φ) ≤ (1 − ǫ)m. Consider any solution to L. Labels on V give
a truth assignment to the variables. This means, the fraction of satisfied clauses of φ by this truth assignment
is at most (1 − ǫ)m. Consider any unsatisfied clauses Cj = x1 ∨ x2 ∨ x3 by this truth assignment. Any label
(satisfying truth assignment) to Cj is inconsistent with the truth assignment to at least one of its variables (or
else clause Cj is satisfied). Therefore, at least one of the the 3 edges incident with Cj must not be covered.
This implies that at last ǫ

3 fraction of edges are not covered. Thus Opt(L) ≤ (1 − ǫ
3 ).

21.1 2P1R Proof Systems

Raz’s verifier is a 2 Prover 1-round proof system for a language L with parameters c and s (where c is usually
1 and s is usually 1-ǫ) is a probabilistic verifier V with access to two proofs Π1 and Π2 such that an input y for
L, V sends one query to each of Π1 and Π2 and:

• if y ∈ L → ∃Π1 and Π2 such that Pr[V accepts] = c

• if y /∈ L → ∀Π1 and Π2 such that Pr[V accepts] ≤ s

The PCP Theorem shows that for every L ∈ NP, there is a 2P1R with c = 1,s = 1 − δ for some δ > 0.

Every problem in NP can be reduced to MAX-3SAT. We construct a 2P1R proof system with the above
parameters for MAX-3SAT. Given a formula φ, the proofs Π1 and Π2 are supposed to encode a truth assignment
to φ. For every variable xi ∈ φ, the value of Π1[i] ∈ {0, 1} is the value of xi. For every Cj ∈ φ, Π2[j] ∈ {1, . . . , 7}
is one of seven satisfying assignments for Cj . V picks a random clause Cj and a random variable, say xi, from
that clause accepts if and only if Π1[i] is consistent with Π2[j].

• if φ is a “yes” instance → proofs Π1 and Π2 form a satisfying truth assignment → V accepts with
probability 1

• if φ is a “no” instance → at most (1 − ǫ)m clauses can be satisfied → there is a probability of at least ǫ
3

that the answers from Π1 and Π2 are inconsistent → V accepts with probability < 1 − ǫ
3 (where ǫ

3 = δ)

Can we amplify this probability by repetition?

A k-repetition for this 2P1R proof system is as follows: verifier V k chooses k clauses (randomly) and a variable
(randomly) from each. We have proof entries Π1[i1 . . . ik] ∈ {0, 1}k (representing assignments to k-tuples of



Lecture 21,22: Label Cover, Hardness of Set Cover 21-3

variables i1 . . . ik) and Π2[ji . . . jk] ∈ {1, . . . , 7}k (representing satisfying assignments to k clauses Cj1 . . . Cjk ).
V k accepts if and only if all answers are consistent.

This corresponds to the following repetition of label cover: from an instance L(G(V ,W , E), [M], [N ], {Πvw}),
we build Lk(G′(V ′,W ′, E′), [M ′], [N ′], {Π’vw}) where:

• V ′ = V k (k-tuples of V )

• W ′ = W k

• [M ]′ = [M ]k

• [N ]′ = [N ]k

• (V ′,W ′) ∈ E′ ⇔ (vij , wij ) ∈ E, ∀i, j 1 ≤ j ≤ k (V ′ = (vi1 , . . . , vik),W ′ = (wi1 , . . . , wik ))

• Π′
vw(b1, . . . , bk) = Πvi1 ,wi1

(b1),Πvi2 ,wi2
(b2), . . . ,Πvik ,wik

(bk)

• if OPT(L) = 1 → OPT(Lk) = 1

We expect that if OPT(L) ≤ 1 − δ then OPT(Lk) ≤ (1 − δ)k, but this is not true.

Theorem 3 (Raz 1998) Parallel Repetition Theorem
if OPT(L) ≤ 1 − δ → OPT(Lk) ≤ (1 − δ)Ω(k)

i.e. if φ is a no instance of SAT, V k accepts with probability 2−Ω(k)

Note: [M ′] = [7k] and [N ′] = [2k]

Theorem 4 There is a reduction from SAT to an instance L(G(V,W,E), [7k], [2k], {Πvw}) of label cover such
that:

• if φ is a yes instance → OPT(L) = 1

• if φ is a no instance → OPT(L) = 2−ck for some constant c < 1

and L = nO(k)

Corollary 1 if NP is not a subset of O(npoly log(n)) then there is no O(2log1−ǫ
n)-approximation for labelcover

for any ǫ > 0.

Today we complete the proof of Ω(logn)-hardness of set cover. In the last lecture, we introduced the following
theorem:

Theorem 5 There is a reduction mapping an instance φ of SAT to an instance  L(G(V,W,E),M = [7k], N =
[2k], {Πv,w}) of label cover, such that:

• If φ is a yes instance, then opt( L) = 1.

• If φ is a no instance, then opt( L) ≤ 2−δk, for some δ > 0, | L| = nO(k).

To prove the hardness of approximation of set cover, we need the following set system.
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Definition 1 A set system (U,C1, · · · , Cm, C1, · · · , Cm) with parameters m and l, where U is the a universe
of elements of size O(l · logm · 2l) and C1, · · · , Cm are subsets of U . This set system has the property that any
collection of ≤ l subsets from C′

is that cover U must contain a set and its complement.

There are explicit construction of such (m, l)-set systems. There are also easy probabilisitic constructions.
Consider a label cover instance  L(G(V,W,E),M = [7k], N = [2k], {Πv,w}). We can assume |V | = |W | (e.g. if
not, we can create copies of the vertices in V with the same neighbours). We build an instance of set cover §
such that:

• If opt( L) = 1, then opt(S) ≤ |V | + |W |.

• If opt( L) < 2
l2

, then opt(§) > l
16 (|V | + |W |).

Consider a set system with m = N = 2k and l to be specified later. For every edge e = (v, w) ∈ G, we have a
(disjoint) (m, l)-set system with universe Ue. Let Cvw

1 , · · · , Cvw
N=m be the subsets of Ue. The union of all U ′

es
(for all the edges e) is the universe of the set cover instance, denoted as

U =
⋃

(v,w)∈G

Uvw.

Now we define the subsets in our set cover instance. For every v ∈ V (w ∈ W ) and every label i ∈ [2k] (j ∈ [7k]),
we have a set

Sv,i =
⋃

w:(v,w)∈E

Cvw
i Sw,j =

⋃

v:(v,w)∈E

Cvw
Πvw(j)

This completes the construction of § from  L.

Lemma 1 If opt( L) = 1, then opt(§) ≤ |V | + |W |.

Proof. Consider an optimal labeling l : V → [2k],W → [7k] for  L. Because it is covering every edge (v, w) ∈ E,
Πvw(l(w)) = l(v). This labeling defines a label for every vertex and every pair of vertex/label corresponds to a
set in §. From Cvw

l(v) ⊆ Sv,l(v) and Cvw
l(v) = Cvw

Πvw(l(w)) ⊆ Sw,l(w), we have that Sv,l(v) ∪ Sw,l(w) ⊇ Uvw. Because

all Ue’s for e ∈ E are covered, U is covered. So we have a set cover of size |V | + |W |.

Lemma 2 if opt(§) ≤ l
16 (|V | + |W |), then opt( L) ≥ 2

l2
.

Proof. From the set cover solution, we assign labels (maybe more than one label) to the vertices. If Sv,i

is in the solution, v gets label i. Since there are at most l
16 (|V | + |W |) sets and |V | + |W | vertices, the

average number of labels per vertex is ≤ l
16 . We discard vertices with more than l

2 labels. Afterwords, at

most |V |
4 vertices from each side of V and W are discarded. Let V ′ and W ′ be the vertices remaining in V

and W respectively. Then, |V ′| > 3
4 |V | and |W ′| > 3

4 |W |. Pick an edge e = (v, w) from G randomly. Then
Pr[v ∈ V ′andw ∈ W ′] ≥ 1−(14 + 1

4 ) = 1
2 . This means at least half of the edges of G are between V ′ and W ′. Let

Tv = {Sv,i : i is a label of v} and Tw = {Sw,j : j is a label of w}. We have |Tv| ≤
l
2 and |Tw| ≤

l
2 . Note that sets

in Tv∪Tw cover Uvw. To be more precise, sets in X1 = {Cvw
i : i isa label of v}∪X2 = {Cvw

Πvw(j) : j isa label of w}

cover universe Uvw (|X1 ≤ l
2 and |X2 ≤ l

2 ). Because Uvw is covered by at most l sets (i.e. |X1| + |X2| ≤ l),

there must be a set Cvw
i ∈ X1 and Cvw

Πvw(j) ∈ X2, such that they are complement, i.e. i = Πvw(j). Because

we pick labels of v and w randomly, with probability (2
l
)2 = 4

l2
we have set Cvw

i for v and Cvw
j for w, i.e. the

labels i for v and j for w cover edge e ∈ E. Thus the expected fraction of edges between V ′ and W ′ that are
covered is ≥ 4

l2
. Therefore, at least a fraction of 2

l2
of edges of G are covered.
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This lemma is equivalent to saying that if opt( L) < 2
l2

then opt(§) > l
16 (|V | + |W |).

Let l ∈ Θ(2
δk
2 ). Then, l2 ∈ Θ(2δk). We get a hardness of Ω(l) for §. The size of § is nO(k) · O(l · logm · 2l). If

k = c log logn for sufficiently large c, l = O(2O(log log n)) ≥ logn log logn. log |§| = O(log logn · logn + log l +
log log logn + l) = Θ(l).

We have the following hardness result for set cover:

Theorem 6 Unless NP ⊆ DTIME(nO(log logn)), set cover has no Ω(logn)-approximation algorithm.


