
CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 1 (Sep 4, 2025): Template file
Lecturer: Mohammad R. Salavatipour Scribe: Mohammad R. Salavatipour

1.1 Introduction

You can write stuff here. This document does not have a coherent content and is intended to be used to see
some examples of using Latex for typesetting mathematical forumals and content. So things will look out of
place as they are borrowed from various (irrelevant) places.

Recall that P is the class of problems solvable in polynomial time and NP (informally) are those (decision)
problems whose solutions can be verified by a polynomial time algorithm.

Here is how to create numeric itemized list:

1. first item,

2. second item,

3. and third item

We can talk about P 6= NP or polynmial time algorithms. Here is a different itemized list with reference to the
previous one:

• relax (3), then we are into study of special cases of the problem.

• relax (2), we will be in the field of integer programming and the techniques there such as branch-and-bound,
etc.

• relax (1), we are into study of heuristics and approximation algorithms.

1.1.1 A Linear Program

Consider linear program (TSP-LP) below.

minimize:
∑
e

c(e) · xe (TSP-LP)

subject to: x(δ(S)) ≥ 2 for each cut ∅ (S (V (1.1)

x(δ(v)) = 2 for each vertex v ∈ V (1.2)

x ≥ 0

Constraints (1.1) are the cut constraints and Constraints (1.2) are the degree constraints.

1-1

1-2 Lecture 1: Template file

1.1.2 Tips

Use log n, not log n.

V = {v1, v2, . . . , vn}.

Check out
∑n
i=1 i vs.

n∑
i=1

i.

A displayed equation:

Hn =

n∑
k=1

1

k
=

∫ n

1

dx

x
+O(1) = lnn+O(1)

A matrix:  x1 y1 z1

x2 y2 z2

0 0 1


Problem names should look like this: Set Cover.

Multiple lines under a sum:

n∑
k=1
k odd

k =
⌈n

2

⌉2

1.1.3 An Algorithm

Algorithm 1 describes Kruskal’s Minimum Spanning Tree procedure. Notice how the algorithm is not appear-
ing right after this paragraph even though it does in the .tex. This is ok for scribe notes, the LATEXcompiler
will still put it close.

Algorithm 1 Kruskal’s Minimum Spanning Tree Algorithm

Input: Undirected graph G = (V,E) with edge costs c(e) ≥ 0, e ∈ E.
Output: A minimum spanning tree of G.

T ← ∅
for each edge e ∈ E in increasing order of cost c(e) do

if T ∪ {e} does not contain a cycle then
T ← T ∪ {e}

end if
end for
return T

1.2 NP Optimization problems

An NP optimization problem, Π, is a minimization (maximization) problem which consists of the following
items:

Lecture 1: Template file 1-3

Valid instances: each valid instance I is recognizable in polynomial time. (note: ’Polynomial time’ means
polynomial time in terms of the size of the input.) The set of all valid instances is denoted by DΠ. The
size of an instance I ∈ DΠ, denoted by |I|, is the number of bits required to represent I in binary.

Feasible solutions: Each I ∈ DΠ has a set SΠ(I) of feasible solutions and for each solution s ∈ SΠ(I), |s| is
polynomial (in |I|).

Objective function: A polynomial time computable function f(s, I) that assigns a non-negative rational value
to each feasible solution s for I.

We often have to find a solution s such that this objective value is minimized (maximized). This solution
is called optimal solution for I, denoted by OPT (I).

Examples:

• Vertex Cover: In this case we have:

valid instances : set of graphs with weighted vertices.

feasible solutions : all the vertex covers of the given graph.

objective functions : minimizing the total weight of a vertex cover.

• Minimum Spanning Tree (MST) problem: Given a connected graph G(V,E), with each edge (u, v) ∈ E
assigned a weight w(u, v), find an acyclic subset T ⊆ E that connects all the vertices and its total weight
is minimized. Since T is acyclic and connects all of the vertices, it is a tree.

valid instances : a graph with weighted edges.

feasible solutions : all the spanning trees of the given weighted graph.

objective functions : minimizing the total weight of a spanning tree.

1.3 Approximation algorithms

An α-factor approximation algorithm (or simply an α-approximation) is a polynomial time algorithm whose
solution is always within α factor of optimal solution.

Definition 1 For a minimization problem Π, algorithm A has approximation factor α if it runs in polynomial
time and for any instance I ∈ DΠ it produces a solution s ∈ SΠ(I) such that f(s, I) ≤ α(|I|) · OPT (I). α can
be a constant or a function of the size of the instance.

We use A(I) to denote the value of the solution returned by algorithm A for instance I; therefore, from
Definition 1: A(I) ≤ α(|I|) ·OPT (I). Below are some theorems and lemmas with complex formulas.

Theorem 1 Assume that F and E are defined as above. There exists a constant δ such that for any 0 < ε ≤ 1
the following holds:
Suppose that every trial fi ∈ F has a constant number of outcomes and we can carry out the random trial in
time t1. Let pi = e−ε|Fi| and suppose that for all S ⊆ Fi it holds that:

• if |S| > ε|Fi| then Pr[Ei|S] ≤ pi,

• if |S| ≤ ε|Fi| then Pr[Ei|S] = 0, and

1-4 Lecture 1: Template file

• knowing the outcomes of the trials in S, we can evaluate whether Ei|S holds or not in time t2.

Furthermore assume that for xi = e−δε
2|Fi| it holds that xi ≤ 1

e and:

pεi ≤ xi
∏

Ej∈N(Ei)

(1− xj), 1 ≤ i ≤ m. (1.3)

Then there is a randomized algorithm that finds the outcomes of the random trials in time O((t1 + t2)×Poly(n+
m)) with high probability, where Poly(n+m) is a polynomial in (n+m), such that for every event Ei, the set
Fi is partitioned into at most 3 subsets Si,1, Si,2, Si,3, so that Ei|Si,1 , Ei|Si,2 , and Ei|Si,3 are all false.

Now our goal is to prove the following lemma, by which the main lemma can be proved easily.

Lemma 1 The expected number of (1,2)-trees T with order at least Ψ is at most 21me−Ψ/20 .

For a possible (1,2)-tree T , we say T starts from E0, if E0 is the initial event of the first 1-component of T .
Define

T = {possible (1,2)-trees T with order OT = Ψ that start at E0}.

Now let T ′ ⊆ T be the set of (1,2)-trees obtained after Step 1 of the algorithm that are also in T . By this
definition and (??):

E[|T ′|] =
∑
T∈T

Pr[ZT] ≤
∑
T∈T

∏
Ej :vj∈VC(T)

pj . (1.4)

E[|T ′′S1,...,Sk
|] = e−S0

∑
all l1’s
Ol1

=S1

∑
all l2’s
Ol2

=S2

. . .
∑

all lk’s
Olk

=Sk

k∏
t=1

∏
Ej∈lt

pj

= e−S0

∑
all l1’s
Ol1

=S1

(
∏

Ej1∈l1

pj1
∑

all l2’s
Ol2

=S2

(
∏

Ej2∈l2

pj2 . . .
∑

all lk’s
Olk

=Sk

∏
Ejk∈lk

pjk)) . . .). (1.5)

Denote the set of all extensions R with OR = r of a set Q by EXT(Q, r). For a set Q of events let XQ,r be the
number of extensions R such that R ∈ EXT(Q, r) and all events in R have heads tags. Therefore:

E[XQ,r] =
∑

R:R∈EXT(Q,r)

Pr[Z ′R] =
∑

R:R∈EXT(Q,r)

∏
Ej∈R

pj . (1.6)

By this equation, the most internal summation in (1.5) is in fact E[Xlk−1,Sk]. In Section ??, Lemma ??, we

show that E[XQ,r] ≤ e−r/8eOQ/16. Therefore, E[Xlk−1,Sk] ≤ e−Sk/8eSk−1/16. Using this fact, Inequality (1.5)
can be written as:

E[|T ′′S1,...,Sk
|] ≤ e−S0

k−1∏
i=0

e−Si+1/8eSi/16. (1.7)

We need the following combinatorial lemma to prove Lemma 1.

Lemma 2 Let N+
x denote the set of integers greater than or equal to x. For 1 ≤ k ≤ δψ, define EQk to be the

equation S1 + S2 + . . .+ Sk = ψ, where the domain of each variable Si (1 ≤ i ≤ k) is N+
1
δ

. Then for sufficiently

small δ > 0, the sum of the number of the solutions of all equations EQk (1 ≤ k ≤ δψ) is at most eψ/80.

Lecture 1: Template file 1-5

Proof. Let’s call the equation r1 + r2 + . . . + rδψ = ψ, in which the ri’s are the variables whose domain is
N+

0 , the reference equation. To each solution of equation EQk, for 1 ≤ k ≤ δψ, we associate a unique solution
of the reference equation: set ri = Si, for 1 ≤ i ≤ k, and rj = 0, for k < j ≤ δψ. Therefore, the sum of the
number of solutions of all EQk equations (for 1 ≤ k ≤ δψ) with domain N+

k , is not more than the number
of solutions of the reference equation with domain N+

0 . From elementary combinatorics we know that the
number of non-negative integer solutions of the reference equation is

(
ψ+δψ−1
δψ−1

)
, which is less than

(
ψ+δψ
δψ

)
. Using

Stirling’s approximation for n!:

(
ψ + δψ

δψ

)
≤ [ψ(1 + δ)]

ψ+δψ

(δψ)
δψ
ψψ

≤ eδψ(1 + δ)
δψ

δδψ

≤ eδψ(1+ln (1+ 1
δ))

≤ eψ/80

if δ is sufficiently small.

Proof of Lemma 1: Using (1.7), definition of T ′′S1,...,Sk , and Lemma 2:

E[|T ′′|] ≤
δψ∑
k=1

∑
1
δ
≤S1,...,Sk≤ψ∑
1≤i≤k Si=ψ

E[|T ′′S1,...,Sk
|]

≤ e−S0

δψ∑
k=1

∑
1
δ
≤S1,...,Sk≤ψ∑
1≤i≤k Si=ψ

k−1∏
j=0

e−Sj+1/8eSj/16

≤ e−S0e−ψ/8eΨ/16

δψ∑
k=1

∑
1
δ
≤S1,...,Sk≤ψ∑
1≤i≤k Si=ψ

1

≤ e−Ψ/8eΨ/16eΨ/80

= e−Ψ/20 (1.8)

for sufficiently small δ. Therefore, using (1.8):

E[|T ′|] ≤ e−Ψ/20. (1.9)

Since we have at most m events that can be the initial event of a (1,2)-tree T with total order at least Ψ, using
the bound in (1.9), after Step 1 of the algorithm:

E[|{(1,2)-trees T of order at least Ψ}|] ≤ m
∑
k≥Ψ

e−k/20

≤ 21me−Ψ/20.

Here is another big formula:

1-6 Lecture 1: Template file

. . .

1/1 1/2 1/3 1/n

1+ ε

Figure 1.1: A tight example for SC1.

xc,j
∏

Fj∩Ft 6=∅

(1− xs,t) ≥ e−δε
3|ej |

∏
k≥1/λ

(
1− e−δε

3k
)C(β|ej |eγk+1)

≥ e−δε
3|ej | exp

−2βC ′|ej |
∑
k≥1/λ

e−δε
3keγk


(For C ′ = C + 1 and sufficiently small λ)

≥ exp

{[
−δε3 −

(
2βC ′a1/λ

1− a

)]
|ej |
}

(where a = eγ−δε
3

)

≥ e−ε
3|ej | (if β and γ are sufficiently small)

= pε
2

c,j .

Here is how to include a figure at the top of the page (see Figure 1.1.)

Or you can have your figure go right here (see Figure 1.2)

. . .

1/1 1/2 1/3 1/n

1+ ε

Figure 1.2: A tight example for SC1.

