
CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 9 (Oct 1, 2025): Hashing
Lecturer: Mohammad R. Salavatipour Scribe: Abel Romer, Baxter Madore

9.1 Introduction

Hashing is a very important technique used in the efficient implementation of dictionaries, cryptography, data
streaming, complexity theory and other contexts that require data storage and fast look-ups. A hash function
allows data to be mapped into and retrieved from a table in constant time, and often relies on randomness to
minimize the probability of collisions (mapping keys to the same value).

We define U to be the universe of possible keys, and assume |U | = m to be very large. Let S ⊂ U be a set of
keys mapped into our hash table, and assume |S| is much smaller than m. We want to support the following
operations on S:

• MakeSet(S): create a hash table for S;

• Insert(i, S): add item i to S;

• Delete(i, S): remove item i from S;

• Find(i, S): find item i in S.

By storing our keys in a binary search tree, we can perform these operations in O(log n) time. Assuming we
can perform arithmetic operations in O(1), we will aim to improve on this runtime with a hashing function and
table.

Definition 1 Let T [1...n] be a table and h : U → [n] be a hash function mapping x ∈ U to index h(x) in T .

We define a collision to occur if for two different keys x, y ∈ S, h(x) = h(y). Clearly, when designing a hash
function h, we aim to minimize the number of collisions of elements in S. In particular, if h guarantees no
collisions in S, we say that h is a perfect hash function for S.

We can always find a perfect hash function for any given set S, but it is impossible to find a perfect hash
function for all S in U simultaneously, if |S| < m.

9.2 Hash functions

How do we define hash functions that minimize collisions? One idea is to randomly map elements of S to [n].
This is equivalent to throwing n balls into n bins, uniformly at random. From the previous lecture, we know
the probability of a collision occurring in a particular bin to be 1

n , and the maximum number of collisions in a
given bucket to be

Θ

(
lnn

ln lnn

)
.

We define a set of hash functions with at most a 1
n probability of collision as a universal hash family. Formally:

9-1

9-2 Lecture 9: Hashing

Definition 2 A family H of hash functions h : U → T is universal if for all x, y ∈ U , where x 6= y, and for h
chosen uniformly at random from H:

Pr[h(x) = h(y)] ≤ 1

n
.

This is a useful definition, because in practice it is infeasible to select a hash function h : U → [n] uniformly
at random from the complete set of n|U | possible hash functions. A uniform hash family allows us to select h
from a far more manageable subset H. Furthermore, most constructions of H imply a stronger property, called
2-universal hashing.

Definition 3 Let H be a family of hash functions h : U → T . We say that H is 2-universal, if for all
x, y ∈ U, x 6= y and all n1, n2 ∈ [n]:

Pr[h(x) = n1 ∧ h(y) = n2] =
1

n2
.

Essentially, this strengthens our definition of universality by requiring that for any h ∈ H, the values h(x) and
h(y) are independent.

A natural follow-up question is whether we can define a family of hash functions with a lower probability of
collisions. It turns out that we cannot improve the bound of 1

n2 by much.

Lemma 1 For U = [m] and any family H of hash functions h : U → T , there exist x, y ∈ U such that

Pr
h∈H

[h(x) = h(y)] ≥ 1

n
− 1

m
.

We can generalize the pairwise independence of 2-universal families to k-wise independence:

Definition 4 Let H be a family of hash functions h : U → [n]. We say that H is k-wise independent, if for
any k distinct keys x1, ..., xk ∈ U and any k distinct values α1, ..., αk ∈ [n]:

Pr
h∈H

[h(x1) = α1 ∧ ... ∧ h(xk) = αk] ≤ 1

nk
.

Theorem 1 Consider any sequence of operations with at most s inserts using a hash function h : U → [n]
drawn uniformly at random from a universal family H. Then the expected cost of each operation is at most
1 + s

n .

Proof. Consider the operation of inserting some x ∈ U . If there are z elements in h(x), then the cost of this
operation is z + 1. We bound E[z]. For each item y ∈ s, define zy = 1 if and only if y ∈ h(x). Then:

E[z] =
∑
y∈s

E[zy] ≤ s · Pr[h(x) = h(y)] ≤ s

n
.

9.3 Constructing a Universal Family

Clearly, it is useful to have a universal family of hash questions, so the natural question is how we might
construct one. We present a simple construction below.

Lecture 9: Hashing 9-3

Suppose that we have a universe U with size |U | = 2u and a table of size n = 2m. Consider a u×m matrix A
with entries chosen from {0, 1} uniformly at random. For each x ∈ U , consider x as a u-bit vector and define
the hash function hA(x) = Ax mod 2. Observe that there are 2m·u possible u×m binary matrices, and so this
creates a hash family H of size 2m·u. We prove that this hash family is universal.

Theorem 2 H is a universal hash family.

Proof. To show that H is universal, we must prove that for all x, y ∈ U , x 6= y,

Pr[hA(x) = hA(y)] ≤ 1

n
.

Observe that hA(x) = hA(y) ⇐⇒ hA(x− y) = ~0. Let z = x− y. Then:

Pr[hA(x) = hA(y)] ⇐⇒ Pr[hA(z) = ~0] ⇐⇒ Pr[Az = ~0].

Since n = 2m and U = {0, 1}u, we want to show that for all z ∈ {0, 1}u:

Pr[Az = ~0] ≤ 1

2m
.

Since x 6= y, it must be the case that z 6= ~0, and so z must contain at least one non-zero entry. Call this non-zero
entry zi∗ = 1.

Let A1, ..., Au be the column vectors of A, and note that Az =
∑
i∈[u] ziAi. Then, if Az = ~0, it must be the

case that the column vector Ai∗ is equal to
∑
i 6=i∗ ziAi.

What is the probability of this happening? Since each entry of Ai∗ is chosen u.r. with probability 1
2 , the

probability that they all match with
∑
i 6=i∗ ziAi is 1

2m = 1
n , and so

Pr[Az = ~0] ≤ 1

2m
.

9.4 Another Universal Hash Construction

The first universal hash construction takes up a lot of space. A better construction uses a prime number p,
where m < p < 2m, and m is the size of the universe.

Denote the integers {0, 1, 2, 3, ..., p− 1} as Zp.

∀a, b ∈ Zp, a 6= 0, define a function fab from U → Zp as fab(x) = ax+ b mod p. The hash of an element x with
parameters a and b is hab(x) = fab(x) mod n.

Define the hash family H to be {hab|a, b ∈ Zp, a 6= 0}.

H has only p choices of b and (p−1) choices of a, so there are p(p−1) possible functions, with each function taking
O(logM) bits to store a and b. We prove that H is universal (i.e. for any x 6= y ∈ U , Pr[h(x) = h(y)] ≤ 1

n).

Theorem 3 H is universal.

Proof. Note that fab(x) = (ax+ b) mod p and hab(x) = fab(x) mod n. Furthermore:

hab(x) = hab(y) =⇒ fab(x) ≡ fab(y) mod n.

9-4 Lecture 9: Hashing

Claim 1 ∀r, s ∈ Zp :

Pr[fab(x) = r ∧ fab = s] =

{
0 r = 0

1
p(p−1) r 6= 0

Proof. If fab(x) = r and fab(y) = s, then

ax+ b mod p = r

ay + b mod p = s.

For unknown a and b, this system has a unique solution in Zp: a = r−s
x−y . Since we require x 6= y, a is non-zero

iff r 6= s. Thus, there is exactly 1 out of all possible p(p− 1) functions that give both fab(x) = r and fab(y) = s.

We have that hab(x) = hab(y) iff r = s mod n. Then:

Pr[hab(x) = hab(y)] =
1

p(p− 1)
× |{(r, s) | r 6= s and r ≡ s mod n}|. (9.1)

Since there are dPn e − 1 possible values for s such that r = s mod n, the size of the set in the last term of

Equation 9.1 is at most P (dPn e − 1) ≤ p(p−1)
n . This gives us the following result:

Pr[hab(x) = hab(y)] ≤ 1

p(p− 1)
· p(p− 1)

n
=

1

n
(9.2)

Therefore, H is universal.

9.5 Perfect Hashing

In this section, we consider only static dictionaries, where the set S of elements in the dictionary is fixed and
the only concern is the “find” operation.

Definition 5 A family H of hash functions is called perfect if for every subset S ⊂ U , there is a hash function
h ∈ H such that h is perfect for S.

Suppose |S| = N . We show a two-level hashing that gives perfect hashing scheme with O(N) space and constant
look-up time, and uses universal hashing.

Claim 2 If we use universal hashing for a set S with size N into a table of size n = O(N), then with probability
≥ 1

2 , chain sizes are O(
√
n).

Proof. For all x, y ∈ S, let

cxy =

{
1 h(x) = h(y)

0 h(x) 6= h(y)

and define c =
∑
x 6=y∈S cxy. Then we have the following:

E[C] = E[
∑
x6=y

cxy] =
∑
x 6=y

E[cxy] ≤
(
N

2

)
1

n
. (9.3)

Lecture 9: Hashing 9-5

If n = N , this value is approximately n
2 . By Markov’s Inequality, Pr[c ≥ N] ≤ 1

2 . In a chain of size ≥
√

2N ,

there are
(√

2N
2

)
≥ N collisions, so the max chain size is O(

√
N) with probability at least 1

2 .

If Li is the length of a chain at index i, then the total number of collisions is
∑
i

(
Li

2

)
. Therefore, with probability

at least 1
2 ,
∑
i L

2
i ≤ 3N .

Denote the first-level hash function mapping U → [N] as h∗. For all Li keys mapped into location i, build
a secondary table of size Mi = L2

i , and use a second-level universal hash function h∗i to map each of the Li
keys into [Mi]. Setting n to L2

i in Equation 9.3 gives a ≤ 1
2 probability of there being any collisions in the

second-order hash table, and in the case of a collision, a different second-order hash function is tried until there
are no collisions.

To look up an item q in the hash table, check h∗(q) for the location of the second-order hash table, then check
h∗i (q) to get the location of q. The total amount of space for the first-order hash function is N , and the amount
of space used for all of the second-order hash tables is

∑
iO(L2

i) = O(N).

9.5.1 Perfect Hashing Summary

For a static set S ⊆ U with |S| = N :

1. Pick a random h from a universal hash family H mapping U → N . Continue to resample h until the total
number of collisions is ≤ 3N .

2. Let Li be the number of elements x ∈ S where h(x) = i. Then,
∑(

Li

2

)
≤ 3N with probability at least 1

2 .

3. For each i ∈ [N], create a table of size 4L2
i and pick a second-level hash hi from a universal hash family

mapping U → [4L2
i]. Map all Li keys in location i using h∗i . The probability of a collision on the

second-level hash is ≤ 1
2 . Continue to resample h until there are no collisions in the second-level table.

4. For a query on item q, first look at h(q) for the first level, then hh(q)(q) for the second level to find the
item.

9.6 Bloom Filters

In some scenarios, most of the queries to a hash table come back negative. In these cases, it may be more
efficient to maintain a fast primary hash that may return a false positive.

If the filter returns a negative result (i.e. the item is not in the table), then we guarantee that the item cannot
exist in the table. However, if the filter returns a positive result, then we may use a secondary data structure
to check for a false positive.

Recall that if we have N items from a universe of size m, we need O(N logm) bits to store a proper hash table,
as it takes logm bits to represent each item. The idea behind a Bloom filter is to have a hash that maps each
element to a single bit. However, in this case any collision would lead to a false positive. Here is how a Bloom
filter that maps items from S ⊂ U would work:

• Keep an n-bit vector as the hash table.

• Let h1, h2, ..., hk be k random hash functions from U to [n]. For the purposes of analysis, assume that the
hash function’s output is a random number between 1 and n.

9-6 Lecture 9: Hashing

• Given an element x ∈ S, set all hi(x) bits to 1.

To perform a lookup for an item y, check if all k bits of hi(y) are 1. Answer “yes” if they are all 1, and “no”
otherwise.

The hashing procedure ensures that an item y is not in the hash table if any bit hi(y) is zero so there are never
false negatives, but it is possible that all bits of hi(y) have been set to 1 by items which are not y and the
lookup returns a false positive.

The probability that a particular item sets a particular bit to 1 is (1− 1
n)k, so the probability that any individual

bit is zero after adding N items is

(1− 1

n
)kN ≈ e

−kN
n .

Denote this probability as p.

The probability of a false positive on a given item is equal to the probability that all k locations in the item’s
hash are set to 1, which has probability (1− p)k = f . Let

g = k ln(1− e
−kN

n).

Then we have that f = eg.

To find the optimal value of k that minimizes the number of false positives for a fixed n and N , calculate the
derivative of g with respect to k.

dg

dk
= ln(1− e

−kN
n) +

kN

n
· e

−kN
n

1− e−kN
n

This derivative is zero when k = ln 2(nN), and gives a false positive probability of 0.6185
n
N . For example, if

n = 2N then the false positive probability is around 38%, and if n = 8N then the false positive probability is
around 2%.

In general, for an arbitrary false positive tolerance ε, the number of bits that need to be used is about 1.44 log(1
ε)

per entry, or 1.44N log(1
ε) for the whole table.

