CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 8 (Sep 29, 2025): Balls and bins, power of two choices

Lecturer: Mohammad R. Salavatipour Scribe: Kinter Ren

8.1 Balls and Bins

We have n balls as well as n bins. For each ball, we throw it into a bin chosen uniformly at random and
independent from all other balls. We try to analyze various properties such as the maximum number of balls in
a bin, or number of empty bins, etc. These type of questions have applications in load balancing (scheduling)
and hashing (among others).

Definition 1 The load of a bin is the number of the balls inside it.

We will look at some properties of bins related to their loads:

Question 1: what is the probability of any two balls landing in the same bin?

Well it’s simply just % because of each ball choosing bins independent uniformly at random.

Question 2: what is the expected number of empty bins?

We first consider the probability of bin ¢ being empty for any fix i, denoted this event by b;:
Pribi]=(1—-t)"~e .

We define a set random variable {X;} as follows: let X; equal to 1 if bin i is empty, 0 otherwise.

Let X = ), X; which denotes the total number of the empty bins. We have E(X) = 3>, E(x;) = ), Prib)] ~ 2.
Question 3: what is the probability of bin ¢ having load exactly k7 Or at least k?

Let £F be the event that bin 7 having load exactly k and El-zk be the event that bin ¢ having load at least k.
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Question 4: what is the maximum load of all bins?

Theorem 1 The mazimum load is at most 1:;’111‘:1’7‘1 with probability at least 1 — %
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Proof. Apply k = 1?111?1 ™ to the probability bound on PT[SZ-Z’C] we just get above, then:

3lnn

>k elnlnn
Pr[gl ] < 2<W) Inlnn
< 26[(17111 3—Inlnn+Inlnlnn)

< 26721nn — 71272

3lnn
Inlnn

By the union bound, Pr[any bin load > 3182] < %

Inlnn
|

Inn
Inlnn

Note it can be shown that the maximum load is at least Q( ). Now we apply the concentration bounds to

the maximum load.

If we use Markov’s inequality: For a fixed bin, let b; be the random variable that equals to 1 if ball ¢ lands on
that bin and 0 otherwise. Let L denote the load on that bin. We have E(L) = Y7 | E(b;) = .1 | £ = 1. Then
PriL > k] < %, which is not strong enough to bound the maximum load (cause we will apply the union bound
here).

If we use Chebyshev’s: We have Var[L] = Var[} ;b => i Varlb] <> i E(b;) =1. Then Pr[L < k] <
1712" By taking £ = vnInn we have Pr[L < vnlnn] < — L By the union bound, the probability of maximum

Inn*

load at most vnlnn is at least 1 — . Note this is much weaker than what we have above, i.e. probability of

| Inn"
3lnn g at least 1 — 2.
Inlnn n

If we use Chernoff’s bound: we have Pr[|L—E(L)| > t] < 27t. By taking ¢t = 2logn we have Pr[L > 2logn] < n.
Thus by the union bound the probability of maximum load at most 2logn is at least 1 — % This is still weaker
than O(:22) we obtained. Use a stonger version of Chernoff’s bound we can obtain the same bound.

Inlnn

maximum load at most

8.2 Azuma’s inequality

Back to Question 2, we already show the expected number of empty bins is roughly 2. Now the question
is can we use Chernoff’s bound to show it holds with high probability. The answer is no because the events
{X;} are not independent. Imagine if bin ¢ is empty then the probability of other bins being empty decrease
because the balls are tend to land on them conditioned on bin 7 is empty. We will introduce a probability bound
to handle the case the events are not complete independent but limited dependency then we can get a similar
bound of Chernoft’s.

Theorem 2 (Azuma’s) Let X be a random variable that is determined by n trails Ty,--- , T, such that for
each i and any two sequences of possible outcomes ty,--- ,,ti—1,t; and ty,---,,t;—1,t}, the following holds:
[EX|Ty =t1, -, Tiz1 = tic1, T = 4] —E[X|Th = t1, -+, Tim1 = tiz1, T; = 8] < ¢, i.e. changing the outcome

12

of trail i while others are fized does not change E[X] by more than ¢;. Then Pr[|X — E[X]| > t] < 2e *Ti=i 7,

In the case of balls and bins, changing the outcome of one trail (deciding one ball landing on which bin) does
not change the number of the empty bins by more than 1, thus ¢; = 1. By directly applying Azuma’s inequality

nlnn

we get: Pr{|X — 2| > v/nlnn] < 2e” 22" = 2. Thus with high probability, the number of empty bins X is in
the range of 2 +O(vnlnn).
We consider another example where we can see the power of Azuma’s inequality: imagine in a casino where you

can bet amount up to B dollars for each round. Assume it is a fair game, i.e. the probability of win or lose
is the same. If win you gain the amount bet, otherwise the bet money is gone. Overall it’s like a fair coin flip
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with the value which equals to the amount you bet. Let X; be the result of coin flip in round ¢ and Y; as the
total gain after ¢ rounds then |Y; — Y;_1| < B and the expected value of gain in each round is zero. Applying

2
Azuma’s inequality we get Pr[Y; > A] < 92¢'%57 . Note the bound holds no matter what strategy you play or
how much amount money you bet in each round.

8.3 Power of two choices

For balls and bins suppose for each ball we select two bins (instead of one) uniformly at random then we place
the ball in the bin with lower load. We will show this idea can reduce the maximum load significantly, i.e. to
O(Inlnn) ([2]). We introduce some notations before the analysis.

Definition 2 Ball b has the height i if it is the it" ball thrown in that bin.

Note that with this notion the load of a bin is exactly the maximum height of balls in this bin. Now we give
the intuition before we formally describe the whole analysis.

Let h; be the event that a ball gets height 7. Note the number of bins of height at least 4 is at most % (otherwise
the total number of balls would be larger than n). Thus the probability of ball ¢ gets height 5 is when both bins
it selects have height at least 4 balls, i.e. Prlhs] < (i)Q. Then E(the number of bins with height > 5) < .
Similarly we can show Pr[hg] < (4)? and Pr[h;] < (i)y_4 for general i > 4. Thus by taking i = loglogn we
can see h; ~ % which is already very small probability. Note these analysis are under the assumption that the
value (the number of bins with height ) are always close to their expectation. Now we give a complete analysis.

Let X be a binomial random variable sampled from B(n,p), i.e. Pr(X =i] = (})p'(1—p)"~*fori=0,1,--- ,n
(consider X as the number of heads flipping n biased coins with head probability p). By apply Chernoff’s bound
we have the following lemma:

Lemma 1 Pr[X > 2np] <e 5.

Lemma 2 Suppose z1, - ,x, € B(n,p) are binomial variables and yi,- - ,y, are random variable such that
vi = yi(x1, -+ @) with Priy; = a1, - ,x,] < p. Then Prd>_,y; > k] < Pr>, z; > kl.

This lemme shows that even if y;,--- ,y, are not independent random variables, as long as the conditional
head probability (y; = 1|x1,--- ,2,) is still bounded by p then )", y; can be upper bound by binomial variable
B(n,p).

Definition 3 We define v;(t) to be the number of bins of height at least i after time t, u;(t) to be the number
of balls of height at least i after time t and hy to be the height of the ball thrown at time t.

Note by the definition, u;(t) > v;(¢) holds because in a bin of height at least 7 there are at least one ball of
height at least .

Definition 4 We define &; to be the events that v;(t) < Bin where B4 = i and Biy13? fori > 4.

AS what we described in the intuition part, we have the following holds:
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Lemma 3 Vi > 4, &; holds with high probability.

Proof. We prove it by induction. The base case is ¢ = 4. In this case we already argue that the number of bins
of height at least 4 is at most %, i.e. wy(t) < %, thus & holds.

For the inductive step, assume &; holds (i > 4): v;(t) < fin. Let Y; be random variable that equals to 1
if and only if Ay > i+ 1 and v;(t — 1) < Bin. Notice that if pr[h; > i + 1|v;(t — 1) < Bin] < B2. Thus
PrlY; = 1] < 82 and Y; is dominated by B(n,3?) as described in Lemma 2. Combined with lemma 1 we get

82n Bigfin
- dian

PT[Zt24E>2ﬂ?n} <e 3 =e¢

Assume S > 222 for now (implying Pr[},5,Y: > 267n] < ), then using the fact that Pr[A|B] =
PSP < sl we get Pri~ €inl&] = Pr{Se,Ye 2 Binnl€] € gy Thus Pri~ ] = Pri~
Ein1|E)Pr[E] + Pri~ Eipa| ~ &Pri~ &] < & + Pr[~ &]. Since Pr[~ &] = 0 and Pr[~ &) increased by 25

for each step i. Up to Biy1 > 121% (which is equivalent to ¢ = loglogn), ~ &; still happens with very small
probability.

We now deal with the case 811 < %, let i* be the first time that G« < 121%7 then notice the prob-
ability that for any fixed ball enters a bin with at least ¢* balls is at most O(%) Then the proba-
bility that any two balls enter a bin with at least ¢* balls is at most (72’)0(1‘;;4") = O(l‘;;”), this implies
Prlany bins has more than i* 4+ 2 balls | < 0(1“42")

n

8.4 Extension

We have shown a huge improvement going from choosing one bin to two bins, i.e. maximum load from O( hirl‘r?n)

to ©(Inlnn). The natural question is: what if we choose more bins (say d bins) and place the ball in the
minimum load one?

It turns out there’s still improvement but nothing significant.

Theorem 3 [1] For d > 2, the d choice in balls in bins problem gives the mazimum load of % + O(1) with
probability 1 — O(L).
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