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24.1 Secretary & Prophet

Recall the secretary problem from last lecture. We have n candidates for a secretary position and we assume
there is a universal ordering of them, i.e. if we compare any two candidate i & j we can say which one is better
for the job. The candidates arrive in a u.r. (uniformly random) order; each time we interview a candidate we
must decide to either hire (and terminate the process) or pass and continue.

Goal: Find a strategy to maximize the prob. of hiring the best candidate.

We proposed the following algorithm:

• Pass for the first n
e candidates.

• Then hire the candidate that is the best seen so far.

Theorem 1 This algorithm finds/hires the best candidate with prob. 1
e .

We showed that if we pass k and then hire the best, we hire the best with prob. (1 − o(1)) kn ln(nk ) and with
k ≈ n/e this is maximized.

We can show that in this problem the best strategy is in fact a wait-and-pick strategy like what we described.

Theorem 2 The strategy that maximizes picking the best candidate is a wait-and-pick strategy.

Proof. Consider some fixed optimal strategy. Let

• pi: prob. the strategy picks agent at position i.

• qi: prob. pick agent at position i conditioned on it being the best seen so far.

So qi = pi
1/i = i · pi.

Pr[Picking the best] =
∑

Pr[i’th agent is the best & we pick it]

=
∑

Pr[i’th agent is the best ] · qi

=
∑
i

1

n
qi =

∑
i

i

n
pi.

Clearly 0 ≤ pi ≤ 1. And we have:

pi = Pr[pick agent i | i is best so far] · Pr[i is best so far]

≤ Pr[did not pick 1, . . . , i− 1 | i is best so far] · 1

i
.
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But not picking 1, . . . , (i− 1) is independent of i being the best so far. So pi ≤ 1
i (1−

∑
j<i pj).

So we can upper-bound the success prob. of this (and any) strategy by the following LP:

maximize
∑
i

i

n
· pi

Subject to:

i · pi ≤ 1−
∑
j<i

pj

0 ≤ pi ≤ 1

It can be verified that: {
pi = 0 if i < k,

pi = (k − 1)
(

1
i−1 −

1
i

)
if k ≤ i ≤ n,

is a feasible solution where k is the smallest integer s.t. Hn−1 −Hk−1 ≤ 1. It can be shown that the dual LP
has the same value, and thus must be optimum.

We have a wait-and-pick strategy whose value is the same as this LP solution: For position i, if we have not
picked any & this is the best so far, pick with prob.

ipi
1−

∑
j<i pj

.

Then it can be shown that this is picking the best candidate with prob.
∑
i
i
npi which is the same as the LP.

24.1.1 Extension: Multiple agents

Suppose we want to hire k agents (or pick k items) instead of just 1.

Goal: maximize the expected sum of the values of these k items.

Say the set of k largest items are S∗ ⊆ [n] and their total values is V ∗ =
∑
i∈S∗ ai.

First approach: Suppose we pass on the first n/2 agents. Note that we expect half (k/2) of the largest items
to be in the first half and half (k/2) be in the second half. Suppose we use the value ã of the (1− ε)k2 -th largest
element in the first half as the threshold and pick up to k items from the second half if their values are ≥ ã.

We can formalize this: Let δ = O( log k
k1/3

) and ε = δ
2 . Our goal is an algorithm that gives value V ∗(1− δ) (Note

→ 1 when k → ∞). Pass the first n/2 items. Let ã be the value of (1 − ε)δk’th highest among the “passed”
items; pick the first k elements in the remaining (1− δ)n with value ≥ ã.

Bad events:

• E1: if a′ = mini∈S∗ ai is the lowest value of S∗ and ã < a′ (we pick items with lower value).

• E2: # of items from S∗ in the last (1− δ)n and greater than ã is much smaller than k.

Why these bad events happen rarely: For E1, less than (1− ε)δk items from S∗ fall in the first δn locations; this

requires the # of them is smaller than (1 − ε)× expectation. Using Chernoff-Hoeffding this prob ≤ e−ε
2δk ≈

1
poly(k) .
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For E2 to happen, more than (1− ε)δk of the top (1− δ)k from S∗ must be in the first δn elements. This means

the # of them exceeds (1 +O(ε)) times the expectation, again has probability ≤ e−ε2δk = 1
poly(k) .

Best possible: [Kleinberg05] showed that we can get 1−O(
√

1/k) competitive ratio for the k secretary & this
is best possible.

24.2 The Prophet Inequality

The setting and the goal of this is slightly different. We have a distribution for the value of each item but we
don’t know the actual value until the candidate is sampled (interviewed). The arrival of candidates/items is
not random but adversarial!

Formally: An ordered set of random variables X1, . . . , Xn, with known distribution. At each step i, we sample
xi ∼ Xi and get its value: we can decide to accept (terminate) or pass (continue).

Goal: maximize the expected value of chosen item(s) compared to maxiXi. i.e. find an algorithm A s.t.
E[A] ≥ α · E[maxiXi] while maximizing α.

First we show we cannot have α > 1
2 . Suppose X1 = 1 is always 1 while X2 = 0 with prob 1 − ε and X2 = 1

ε
with prob ε. Then E[max{X1, X2}] = (1− ε) · 1 + ε · 1ε = 2− ε.

Any strategy either picks X1 (which always has value 1) or picks X2 and in either case E[algorithm] = 1. So
we cannot have α > 1

2 , but surprisingly we can get α = 1
2 .

Theorem 3 ([KSG78]) There is a strategy with α = 1
2 .

Proof. The idea is similar to the secretary problem, however because the arrival is not random (could be
adversarial) we cannot ignore a fixed collection of values. Define Xmax = maxiXi and let τ = 1

2E[Xmax]. The
algorithm is: Select the first xi such that it is ≥ τ .

For any random variable Y let Y + = max{Y, 0}. Then:

E[Xmax] = E[τ +Xmax − τ ]

= τ + E[(Xmax − τ)+] since (Xmax − τ)+ ≥ Xmax − τ

≤ τ + E[
∑
i

(Xi − τ)+]

= τ +
∑
i

E[(Xi − τ)+] (∗)

Let q be the probability that the algorithm returns some value q = Pr[∃i : Xi ≥ τ ] = 1− Pr[∀i : Xi < τ ].

Then we have:

E[Alg] =
∑
i

Pr[
∧
j<i

(Xj < τ) ∧ (Xi ≥ τ)]︸ ︷︷ ︸
Alg=Xi

·E[Xi

∣∣∣ ∧
j<i

(Xj < τ) ∧ (Xi ≥ τ)]

=
∑
i

Pr[
∧
j<i

(Xj < τ)] · Pr[Xi ≥ τ ] · E[τ + (Xi − τ)+|Xi ≥ τ ]︸ ︷︷ ︸
τ+E[(Xi+τ)+]
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Note that q =
∑
i Pr[

∧
j<i(Xj < τ)] · Pr[Xi ≥ τ ].

Finally, we have:

E[Alg] = q · τ +
∑
i

Pr[
∧
j<i

(Xj < τ)] · E[(Xi − τ)+]

≥ q · τ +
∑
i

(1− q)E[(Xi − τ)+]

≥ q · τ + (1− q)(E[Xmax]− τ) using (*)

= τ.

24.2.1 LP-based Generalization

The following LP-based approach works for more general settings of prophet inequalities. Suppose Xi comes
from a known distribution and say it will have value vi ≥ 0 with probability pi and is zero otherwise (for
simplicity we are focusing on disc. version but the same argument works in general; in general, we can have:
Pr[Xi ≥ vi] = pi).

Consider the following LP:

maximize:
∑
i

xi·vi

subject to: xi ≤ pi ∀i∑
i

xi ≤ 1

xi ≥ 0

Let x∗ be the optimal LP solution.

Lemma 1
∑
i x
∗
i · vi ≥ E[Xmax]

Proof. We give a feasible sol with objective value E[Xmax]. Let qi be the prob. that Xi is non-zero and is
Xmax. Note qi ≤ pi and

∑
qi ≤ 1. Also

∑
i qi · vi = E[Xmax].

Using this lemma we can design a 1
4 -competitive alg.

Idea: The LP solution x∗ suggests how frequently we accept Xi (x∗i ). If we had no constraints on how many

Xi’s we can accept we could say: accept Xi when it has value vi with probability
x∗
i

pi
, unless we have accepted

something.

This could have poor performance: e.g. X1 = 1 w.p. 1, and

x2 =

{
1
ε2 w.p. ε,

0 otherwise.

We have x∗ = (1 − ε, ε), but an algorithm that always accepts X1 w.p. 1 − ε reaches X2 without accepting
anything at most ε-fraction of the time. So

Pr[reach X2] · Pr[X2 =
1

ε2
] = ε2.
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Therefore, expected value is at most (1− ε) + ε2 · 1ε
2

= 2− ε but E[Xmax] = 1
ε .

What if we ignore each element we reach with probability 1
2? (i.e. we don’t even look at it!)

Algorithm: Let x∗ be LP solution. When looking at item i (assuming nothing is selected), ignore it with prob
1
2 (without even looking), else accept with prob xi.

Lemma 2 This algorithm achieves a value 1
4E[Xmax].

Proof. We say that we reach item i if we have not picked any item before. We pick each i with prob at most
x∗
i

2 (1/2 ignore it and pick w.p. x∗ if we reeach i)

E[Alg] ≥
n∑
i=1

Pr[reach i] · 1

2
· x∗i · vi

≥
n∑
i=1

Pr[
∧
j<i

Not picked j] · x
∗
i vi
2

≥
n∑
i=1

(1−
∑
j<i

x∗j
2

)
x∗i vi

2

≥
n∑
i=1

1

2
· x
∗
i vi
2

since
∑
j

x∗j
2
≤ 1

2

≥ 1

4
E[Xmax]
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