CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 24 (Dec 3, 2025): Prophet Inequality

Lecturer: Mohammad R. Salavatipour Scribe: Lyndon Hallett, Haoxin Sang

24.1 Secretary & Prophet

Recall the secretary problem from last lecture. We have n candidates for a secretary position and we assume
there is a universal ordering of them, i.e. if we compare any two candidate i & j we can say which one is better
for the job. The candidates arrive in a u.r. (uniformly random) order; each time we interview a candidate we
must decide to either hire (and terminate the process) or pass and continue.

Goal: Find a strategy to maximize the prob. of hiring the best candidate.

We proposed the following algorithm:

e Pass for the first 2 candidates.

e Then hire the candidate that is the best seen so far.
Theorem 1 This algorithm finds/hires the best candidate with prob. é

We showed that if we pass k and then hire the best, we hire the best with prob. (1 —o(1))£In(2) and with
k = n/e this is maximized.

We can show that in this problem the best strategy is in fact a wait-and-pick strategy like what we described.
Theorem 2 The strategy that maximizes picking the best candidate is a wait-and-pick strategy.
Proof. Consider some fixed optimal strategy. Let

e p,;: prob. the strategy picks agent at position i.
e ¢;: prob. pick agent at position ¢ conditioned on it being the best seen so far.

So qi = 1:0/1Z =1 ;.

Pr[Picking the best] = Z Pr[i’th agent is the best & we pick it]

= Z Pr[i’th agent is the best | - ¢;
1 1
= Z g%‘ = Z Epi'
7 K]

Clearly 0 < p; < 1. And we have:
p; = Prlpick agent ¢ | ¢ is best so far] - Pr[i is best so far]

1
< Pr[did not pick 1,...,i — 1] ¢ is best so far] - —.
i
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But not picking 1,..., (i — 1) is independent of i being the best so far. So p; < +(1 — > j<iPi)

So we can upper-bound the success prob. of this (and any) strategy by the following LP:

maximize E — - p;
— n
1

Subject to:
top < 1— ij
J<i
It can be verified that:
pi=0 if ¢ <k,
piz(k—1)<——%) if k<i<n,

is a feasible solution where k is the smallest integer s.t. H, 1 — Hx_1 < 1. It can be shown that the dual LP
has the same value, and thus must be optimum.

We have a wait-and-pick strategy whose value is the same as this LP solution: For position 4, if we have not
picked any & this is the best so far, pick with prob.

ip;
1- Zj<z'pj

Then it can be shown that this is picking the best candidate with prob. , %pl- which is the same as the LP. ®

24.1.1 Extension: Multiple agents

Suppose we want to hire k agents (or pick k items) instead of just 1.
Goal: maximize the expected sum of the values of these k items.

Say the set of k largest items are S* C [n] and their total values is V* = _c. a;

First approach: Suppose we pass on the first n/2 agents. Note that we expect half (k/2) of the largest items
to be in the first half and half (k/2) be in the second half. Suppose we use the value @ of the (1 — €)£-th largest
element in the first half as the threshold and pick up to k items from the second half if their values are > a.

We can formalize this: Let § = O(llflg/];) and € = 3. Our goal is an algorithm that gives value V*(1 — 4) (Note
— 1 when k& — o00). Pass the first n/2 items. Let @ be the value of (1 — €)dk’th highest among the “passed”
items; pick the first k& elements in the remaining (1 — §)n with value > a.

Bad events:

e Fy: if a’ = min;c g+ a; is the lowest value of S* and @ < a’ (we pick items with lower value).
o FEy: # of items from S* in the last (1 — d)n and greater than & is much smaller than k.

Why these bad events happen rarely: For Ey, less than (1 —¢€)dk items from S* fall in the first dn locations; this

requires the # of them is smaller than (1 — €)X expectation. Using Chernoff-Hoeffding this prob < e~ €0k ~
1

poly(k) "~
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For F5 to happen, more than (1 —€)dk of the top (1 —d)k from S* must be in the first dn elements. This means
the # of them exceeds (1 + O(e)) times the expectation, again has probability < o=k = m.

Best possible: [Kleinberg05] showed that we can get 1 — O(1/1/k) competitive ratio for the k secretary & this
is best possible.

24.2 The Prophet Inequality

The setting and the goal of this is slightly different. We have a distribution for the value of each item but we
don’t know the actual value until the candidate is sampled (interviewed). The arrival of candidates/items is
not random but adversariall

Formally: An ordered set of random variables X1, ..., X,,, with known distribution. At each step i, we sample
x; ~ X; and get its value: we can decide to accept (terminate) or pass (continue).

Goal: maximize the expected value of chosen item(s) compared to max; X;. ie. find an algorithm A s.t.
E[4] > a - E[max; X;] while maximizing «.

First we show we cannot have a > % Suppose X; = 1 is always 1 while Xy = 0 with prob 1 — e and X, = 1

with prob e. Then E[max{X1,Xo}]=(1—¢€)-1+e-1=2—¢ ‘

Any strategy either picks X; (which always has value 1) or picks X5 and in either case E[algorithm] = 1. So
we cannot have a > %, but surprisingly we can get o = %
Theorem 3 ([KSG78]) There is a strategy with oo = 3.

Proof. The idea is similar to the secretary problem, however because the arrival is not random (could be
adversarial) we cannot ignore a fixed collection of values. Define X, = max; X; and let 7 = %]E[Xmax]. The
algorithm is: Select the first x; such that it is > 7.

For any random variable Y let Y = max{Y, 0}. Then:
E[Xmax] = E[7 + Xmax — 7]
=7+ E[(Xmax — 7) 7] since (Xmax —7)" > Xonaw — 7
<7+ E[Z(Xi —7)7]

—r+ Y EX-nY ()

Let ¢ be the probability that the algorithm returns some value ¢ = Pr[3i: X; > 7] =1— Pr[Vi: X; < 7].

Then we have:

E[Alg] = Zpr[/\(xj <T)A X = )] EXG| N (X <) A (X > 7)]

j<t 1<4
Alg=X;
=> PrA\(X; <7)]-PriX; > 7] E[r + (X; — 7)"|X; > 7]
i j<i

T+E[(X;+7)1]
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Note that ¢ = >, Pr[A._,(X; < 71)] - Pr[X; > 7].

Jj<i

Finally, we have:

E[Alg] =q-7+ ) Pr[A(X; <7)] E[(X; —7)"]
j j<i

> q-T+Z(1 — QE[(X; —7)7]

2 q-7+ (1= q)(E[Xmax] —7) using (*)

=T

24.2.1 LP-based Generalization

The following LP-based approach works for more general settings of prophet inequalities. Suppose X; comes
from a known distribution and say it will have value v; > 0 with probability p; and is zero otherwise (for
simplicity we are focusing on disc. version but the same argument works in general; in general, we can have:
Pr[X; > v] = pi).

Consider the following LP:

maximize: Z T
i
subject to: x; < p; Vi
Zwi <1
i

Let * be the optimal LP solution.

Lemma 1 ), z} - v; > E[Xax]

Proof. We give a feasible sol with objective value E[Xpax]. Let g; be the prob. that X; is non-zero and is
Xomaz- Note ¢; <p; and D" ¢; < 1. Also >, ¢i - v; = E[Xp0z). [ ]
Using this lemma we can design a %—competitive alg.

Idea: The LP solution z* suggests how frequently we accept X; (z7). If we had no constraints on how many

X;’s we can accept we could say: accept X; when it has value v; with probability :;—Z, unless we have accepted
something.

This could have poor performance: e.g. X7 =1 w.p. 1, and

oy = 6% wW.p. €,
0 otherwise.
We have z* = (1 — €,¢), but an algorithm that always accepts X; w.p. 1 — € reaches X, without accepting
anything at most e-fraction of the time. So

1
Prlreach Xo]-Pr[X, = —] = €%
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Therefore, expected value is at most (1 —€) + €2 - 12— 92 _¢but E[Xmax] = L

€ €’

What if we ignore each element we reach with probability £7 (i.e. we don’t even look at it!)

Algorithm: Let 2* be LP solution. When looking at item ¢ (assuming nothing is selected), ignore it with prob

% (without even looking), else accept with prob x;.

Lemma 2 This algorithm achieves a value iE[me].

Proof. We say that we reach item i if we have not picked any item before. We pick each ¢ with prob at most
% (1/2 ignore it and pick w.p. z* if we reeach )

1
E[Alg] > Z Pr[reach 4 5T
> ZPT[/\ Not picked j] - Vi
=1 j<i
> (1= 35
i=1 j<i
>zn:1% since Z£<1
- pat 2 2 7 2 72
1
> 7E Xmax
> B[ X0
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