
CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 23 (Dec 1, 2025): Online algorithms, Paging, Secretary problem
Lecturer: Mohammad R. Salavatipour Scribe: Lyndon Hallett, Haoxin Sang

23.1 Online Algorithms

In some problems, data is given in an online fashion and we must make decisions without knowing the full data.
These decisions are irrevocable.

23.1.1 Example: Rent-or-Buy (Ski Rental)

We want to ski this winter, but we don’t know how many days we will go.

• Rent Ski for a day: cost = R

• Buy Ski/Pass (use unbounded): cost = B

Clearly, if we knew the # of days > B
R , we should buy; otherwise, we should rent.

Question: What is the best algorithm?

Definition 1 (Competitiveness) An algorithm Alg is given. If instance I has a solution with value Alg(I)
and Opt(I) is the best possible (offline) solution, then

max
I

Alg(I)

Opt(I)

is called the competitive ratio of Alg (for minimization).

Definition 2 (Strong Competitiveness) Assume the same as above, then we call r the strong competitive
ratio if

Alg(I) ≤ r ·Opt(I) + C

where C is a constant.

A deterministic algorithm for Rent-or-Buy

For simplicity, assume R = 1.

Algorithm (deterministic rent-or-buy): Suppose we decide to rent until a total of B − 1 days, and then
decide to buy on day B.

This doesn’t seem smart, but:

Lemma 1 This deterministic algorithm has competitive ratio 2− 1
B and is the best possible for any deterministic

algorithm.

23-1

23-2 Lecture 23: Online algorithms, Paging, Secretary problem

Proof. Suppose j is the actual # of days we ski.

• Case j ≤ B: We pay the same as Opt.

• Case j > B: We pay B − 1 (renting) +B (buying) = 2B − 1. While Opt = B.

Competitive Ratio ≤ 2B − 1

B
= 2− 1

B

Tightness: Clearly any deterministic algorithm must decide some day to buy (hence rents until a day). Suppose
Algi is the algorithm that rents for i days and then buys on day i. For any i:

• If i = 1: Let the # of days be 1. Then Algi pays B. Ratio = B.

• If i ≥ B: Let the # of days be B. Then Algi pays i− 1 + B. Ratio = i−1+B
B ≥ 2− 1

B .

• If 1 < i < B: Let the # of days be
⌊
i−1+B
2−1/B

⌋
≥ 1. Then Algi pays i− 1 + B. Ratio = i−1+B

B ≥ 2− 1
B .

Can randomization help? Yes! It can be shown that a randomized strategy gives a ratio of e
e−1 (Exercise!).

23.1.2 Example: Paging (Caching)

Tradeoff between large (slow) memory and fast/small memory (Cache).

• Whenever we need data from memory, we go to Cache.

• If a page is already in Cache: Cache hit; otherwise: Cache miss.

• If cache is full, we need to evict some data to make room.

• Cache miss slows the system; minimize the # of cache misses.

Parameters:

• n: total # of memory space.

• k: size of cache (# of pages we can keep).

Example: n = 6, k = 3. Sequence: 4, 3, 3, 2, 4, 1(miss), 1, 5(miss), 3, 2 . . .

23.1.2.1 Optimal Algorithm (Offline)

If we know the sequence? Evict the page for which the next request happens the latest in the future (among
all pages currently in the Cache).

Lecture 23: Online algorithms, Paging, Secretary problem 23-3

23.1.2.2 Deterministic Caching

We don’t know the sequence of requests in advance. Many deterministic online algorithms:

• LRU (Least Recently Used): Evict the page that hasn’t been used the longest time.

• FIFO (First In First Out): Cache is like a queue.

• LFU (Least Frequently Used): Evict the least frequently used one.

• LIFO (Last In First Out): Cache works like a stack.

We will see that LRU and FIFO have competitive ratio k, while the other two have unbounded ratio.

Bad example for LFU & LIFO: Suppose we load pages 1 . . . k initially and consider the sequence:

1, 2, . . . , k, k + 1, k, k + 1, k, k + 1, . . .

After the first k requests, we evict k, then k + 1, then k . . . We have a cache miss for every request. Optimum
algorithm would evict 1 instead and have no more misses.

Lemma 2 No deterministic algorithm can have better than k competitive ratio.

Proof. Suppose n > k. For any deterministic algorithm, the adversary can request a page not in cache in each
step. Then every request is a miss, and n misses in total.

Optimum algorithm can always evict the page that will be requested furthest in the future. So when a miss
occurs, at least k other requests must have been in the cache. Then optimum misses one every k (or roughly
n
k). Therefore, competitive ratio of any deterministic alg ≥ k.

Lemma 3 LRU has competitive ratio k.

Proof is left as an exercise.

23.1.2.3 Deterministic 1-Bit LRU (Marking Algorithm)

There is a variant of LRU: maintain a single bit for each page. For each marked/unmarked page: bit is 0/1,
respectively. The procedure is as follows:

Procedure:

• Initially all pages are unmarked in phase.

• When a page is requested:

– If the page is in the cache, mark it.

– Otherwise:

∗ If ∃ an unmarked page, then evict an arbitrary unmarked page, bring in the request & mark it.

∗ Else, unmark all pages and start next phase.

Lemma 4 The Marking algorithm is k-competitive.

23-4 Lecture 23: Online algorithms, Paging, Secretary problem

Proof. Consider some i-th phase. We have k distinct pages accessed in a phase. So we do at most k page faults
per phase (as each page fault results in a marked page). When a phase ends, we must have had k + 1 distinct
page requests. Clearly OPT must have at least one page fault. Therefore, 1-bit LRU has competitive ratio k

23.1.2.4 Randomized 1-Bit LRU (Marking)

Suppose instead of evicting an arbitrary unmarked page, we choose one uniformly at random.

Lemma 5 The randomized marking is O(log k)-competitive.

Proof. We show a competitiveness of 2Hk, where Hk = 1 + 1
2 + · · · + 1

k ≈ ln k. Let Si be the set of pages in
cache at start of phase i. Let ∆i = |Si+1 \ Si| denote the number of new pages added during phase i.

We show E[# of misses in phase i] ≤ ∆i(Hk + 1). Suppose Ri are the distinct requests in phase i. There are
two types of requests:

• Clean request: Request page not in Si.

• Stale request: Otherwise.

A cache miss is either clean or stale.

Note that the # of missed clean requests ≤ ∆i. Each clean request brings in a new request and adds to cache &
marks it in Si+1. To bound the # of stale cache misses: Suppose there are c clean requests so far and consider
the (s + 1)-th stale request. The probability that this causes a miss is ≤ c

k−s since we have evicted c random
pages out of the remaining k − s stale requests. Since c ≤ ∆i, we have:

k−1∑
s=0

c

k − s
≤ ∆i

k−1∑
s=0

1

k − s
= ∆iHk

So E[# of cache misses in phase i] ≤ ∆i(1 + Hk) (1).

Now we show for OPT, the # of cache misses ≥ 1
2

∑
∆i. Let ni: # of cache misses of OPT in phase i. Note

that there are k + ∆i distinct pages in phases i− 1 & i. So at least ∆i cause a miss. Therefore, we have

ni−1 + ni ≥ ∆i (2)

, and consequently,

Opt ≥ 1

2

∑
∆i

Combining (1) & (2):

E[# of cache misses] ≤ 2(Hk + 1) ·OPT

23.1.3 Generalizing Paging: k-Server Problem

The following generalization of paging has received a lot of attention, known as the k-server problem.

Lecture 23: Online algorithms, Paging, Secretary problem 23-5

• Suppose we are given a metric space (V, d) with distance function d : V × V → R+ that satisfies the
triangle inequality. Say |V | = m and we have k servers that are located at different points of V .

• At each time t, we get a request at ∈ V and we need a server at point at to perform the task.

• If there is not a server there, we have to move a server to at and if this server moves from point x to at,
we pay cost d(x, at).

Goal: Find a strategy to place the servers to serve all the requests while minimizing server moving cost.

Paging as special case: We can model paging as k-server: for all points x, y ∈ V , set d(x, y) = 1.

There is a deterministic (2k−1)-competitive algorithm for k-server. It is conjectured that there is a k-competitive
deterministic algorithm for k-server. For a long time a poly-logarithmic competitive randomized algorithm was
open until a work by Bansal/Buchbinder/Madry/Naor in 2011 [BBMN11].

23.2 Online Decision Making: The Secretary Problem

Suppose we want to interview people for a secretary position. We have a set of n candidates and we want to
hire the best one. We can interview one-by-one and we have to make a decision (to hire or pass and continue)
after each interview. These decisions are irrevocable!

• We have a sequence of n items/agents arrive a1, a2, . . . , an with a total ordering between them (∀i, j: can
say if ai is better than aj).

• These items arrive in a uniformly random order.

• We can only compare an item with previously seen elements.

• We can hire (choose) the current item and stop, or pass (continue) to see next.

Goal: Find an algorithm/strategy that maximizes the probability of choosing the best item.

Intuition: If we choose early on: chance of picking the best is low, and if we wait too long we miss out on the
good ones.

How about:

• Pass on first n
2

• Then pick first that is better than all seen.

Lemma 6 This strategy finds the best with probability ≥ 1/4.

Proof. Consider the following two events:

• E1: The best element is in the second half.

• E2: The 2nd best element is in the first half.

23-6 Lecture 23: Online algorithms, Paging, Secretary problem

Note that in E1 ∩ E2, the algorithm finds the best element.

Pr[win] ≥ Pr[E1 ∧ E2] = Pr[E1] · Pr[E2|E1] =
1

2
· n/2

n− 1
=

1

4
+ o(1)

.

Can we improve this? Note that the analysis is loose; we still find the best when, for example:

• The third best element is in the first half, the best and second best elements are in the second half, and
the best element appears before the second best element.

Improved strategy: Pick k ∈ {1, . . . , n}, then pass on the first k and then choose one that is better than all seen
so far.

Lemma 7 This modified algorithm has probability (1− o(1)) k
n ln n

k of picking the best.

Proof. For any i > k, we compute the probability of picking the best when it is ai. For this we need both:

1. E1: ai is the best.

2. E2: the best among a1 . . . ai−1 has rank ≤ k.

Pr[win] =

n∑
i=k+1

Pr[ai is the best and alg picks it]

=

n∑
i=k+1

Pr[E1 ∧ E2]

=

n∑
i=k+1

Pr[E1] · Pr[E2]

=

n∑
i=k+1

1

n
· k

i− 1

=
k

n

n∑
i=k+1

1

i− 1

=
k

n
(Hn−1 −Hk−1)

' k

n
(ln(n− 1)− ln(k − 1))

=
k

n
ln

n− 1

k − 1
= (1− o(1))

k

n
ln

n

k

Since we want to maximize this, we solve for the best k: f(x) = x
n ln n

x .

Take derivative (1st & 2nd):

f ′(x) =
1

n
(ln

n

x
− 1); f ′′(x) =

1

n
(− 1

x
)

Lecture 23: Online algorithms, Paging, Secretary problem 23-7

In (0, 1), f is concave and the maximum is when f ′(x) = 0→ ln(n
x) = 1→ x = n

e .

So the best value for k is n/e. Therefore,

Pr[win with k =
n

e
] = (1− o(1))

k

n
ln

n

k
' 1

e

Note: It can be shown this is the best strategy.

23.3 References

[BBMN11] Nikhil Bansal and Niv Buchbinder and Aleksander Madry and Joseph Naor. A Polylogarithmic-
Competitive Algorithm for the k-Server Problem. In Journal of the ACM (JACM), vol. 62, no. 40, pp. 1-49.
2015.

