
CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 3 (Sep 10, 2025): Advanced Dynamic Programming
Lecturer: Mohammad R. Salavatipour Scribe: Mohsen Mohammadi, Parsa Zarezadeh

3.1 Optimal Binary Search Trees: A Recap

We recall the Optimal Binary Search Tree (BST) problem. We are given a set of keys k1 < k2 < . . . < kn
and ”dummy” keys d0 < d1 < . . . < dn, where di represents values between ki and ki+1. We are also given
frequencies:

• pi: the frequency of searching for key ki.

• qi: the frequency of searching for a value in the range of di.

The goal is to construct a BST that minimizes the expected search cost. If dT (x) is the depth of a node x in a
tree T (with the root at depth 0), the expected cost is:

E[cost] =

n∑
i=1

(dT (ki) + 1) · pi +

n∑
i=0

(dT (di) + 1) · qi

i 0 1 2 3 4 5
pi 0.15 0.20 0.05 0.15 0.10
qi 0.05 0.05 0.05 0.05 0.05 0.10

Table 3.1: Example frequencies for keys and dummy keys.

k2

k1

d0 d1

k4

k3

d2 d3

k5

d4 d5

Figure 3.1: Optimal BST structures for the given frequencies.

Let f [i, j] =
∑j

l=i pl +
∑j

l=i−1 ql and let O[i, j] be the minimum expected search cost for a BST on the keys
ki, . . . , kj (and dummy keys di−1, . . . , dj). If we choose kr as the root for this subtree, its left child will be the

3-1



3-2 Lecture 3: Advanced Dynamic Programming

root of an optimal BST for keys ki, . . . , kr−1 and its right child will be the root of an optimal BST for keys
kr+1, . . . , kj . So the cost of this subtree is:

O[i, j] = pr + (O[i, r − 1] + f [i, r − 1]) + (O[r + 1, j] + f [r + 1, j])

= O[i, r − 1] + O[r + 1, j] + f [i, j]

When kr is the root, all nodes in its left and right subtrees increase their depth by 1. The cost increase is the
sum of all frequencies in that subtree. The recurrence relation is:

O[i, j] = min
i≤r≤j

{O[i, r − 1] + O[r + 1, j] + f [i, j]}

The base case is O[i, i− 1] = qi−1 for 1 ≤ i ≤ n + 1.

Computing the entire table for O[i, j] involves filling O(n2) entries. For each entry, we must check O(n) possible
roots kr. This leads to a total time complexity of O(n3).

We also define the root[i, j] table, where root[i, j] stores the index r of the key kr that yields the minimum
expected cost for the subproblem on keys ki, . . . , kj . This table allows us to reconstruct the optimal BST
structure.

1.00

0.70 0.80

0.55 0.50 0.60

0.45 0.35 0.30 0.50

0.30 0.25 0.15 0.20 0.35

0.05 0.10 0.05 0.05 0.05 0.10

5

4

3

2

1

0

j i
1

2

3

4

5

6

fij

2.55

1.80 1.90

1.20 1.30 1.20

0.90 0.70 0.65 0.90

0.30 0.40 0.25 0.35 0.40

0.05 0.10 0.05 0.05 0.05 0.10

5

4

3

2

1

0

j i
1

2

3

4

5

6

Oij

2

2 4

2 2 4

2 2 4 5

1 2 3 4 5

5

4

3

2

1

j
1

2

3

4

5

i

ROOTij

Figure 3.2: Tables for fij , Oij , and rootij for the given frequencies.



Lecture 3: Advanced Dynamic Programming 3-3

3.2 Improving Time with Monotonicity

3.2.1 The Knuth-Yao Speedup for Optimal BST

The O(n3) complexity can be improved. In 1971, Knuth proved a monotonicity property for the optimal root
indices.

Lemma 1 (Knuth ’71) For all valid i, j, the optimal root index satisfies the following inequality:

root[i, j − 1] ≤ root[i, j] ≤ root[i + 1, j]

This property implies that every row and column in the root[·, ·] table is sorted. We can leverage this to
significantly reduce the search space for the optimal root r. Instead of searching for r in the range [i, j], we only
need to search in the much smaller range [root[i, j − 1],root[i + 1, j]].

The improved algorithm, Faster-Opt-BST, is as follows:

Algorithm 1 Faster-Opt-BST

1: Compute all f [i, j] values.
2: for i← 1 to n + 1 do
3: O[i, i− 1]← qi−1

4: for l← 1 to n do
5: for i← 1 to n− l + 1 do
6: j ← i + l − 1
7: O[i, j]← −∞
8: for r ← root[i, j − 1] to root[i + 1, j] do
9: temp← O[i, r − 1] + O[r + 1, j] + f [i, j]

10: if O[i, j] > temp then
11: O[i, j]← temp
12: root[i, j]← r

return O[1, n]

The total work for the innermost loop, for a fixed diagonal length l = j − i, is:

n−l∑
i=1

(root[i + 1, i + l − 1]− root[i, i + l − 2] + 1)

This sum telescopes, resulting in a complexity of O(n) for each diagonal. Since there are O(n) diagonals, the
total time complexity is reduced to O(n2). Further improvements by Hu & Tucker have reduced the complexity
to O(n log n).

3.2.2 Finding row minimums Problem

This speedup is an instance of a more general principle. Consider the problem of finding the minimum element
in each row of an n×m matrix M . The naive approach takes O(nm) time. However, if the matrix has a special
structure, we can do better.



3-4 Lecture 3: Advanced Dynamic Programming

Definition 1 A matrix M is monotone if the index of the leftmost minimum element in any row is not to
the left of the index of the leftmost minimum of the previous row. If LM [i] is the column index of the leftmost
minimum in row i, then for all i:

LM [i] ≤ LM [i + 1]

8 21 35 15 29

74 13 19 29 53

21 7 27 19 75

63 43 19 11 75

10 7 19 2 4




Figure 3.3: A monotone matrix with leftmost minimum highlighted.

For monotone matrices, we can find all row minimum more efficiently. A divide-and-conquer approach works
as follows:

1. Recursively find the row minimum for all odd-numbered rows.

2. For each even row 2i, we know from monotonicity that LM [2i− 1] ≤ LM [2i] ≤ LM [2i + 1]. We can find
the minimum for row 2i by searching only in the range of columns [LM [2i− 1], LM [2i + 1]].

The total time to compute minimum for even rows is
∑n/2

i=1(LM [2i + 1] − LM [2i − 1] + 1) = O(n + m). The
recurrence is T (n,m) = T (n/2,m) + O(n + m), which solves to O(m + n logm).

3.3 The SMAWK Algorithm

The SMAWK algorithm provides an even faster O(n + m) solution for a class of matrices known as totally
monotone matrices.

3.3.1 Monotonicity and Monge Arrays

Definition 2 A matrix is totally monotone if every 2× 2 submatrix is monotone.

A related and stronger property is the Monge property.

Definition 3 A matrix M has the Monge property if for all i < i′ and j < j′:

M [i, j] + M [i′, j′] ≤M [i, j′] + M [i′, j]

Lemma 2 Every Monge matrix is totally monotone.



Lecture 3: Advanced Dynamic Programming 3-5

Proof. Consider a 2×2 submatrix with rows i, i′ and columns j, j′. If it’s not monotone, then M [i, j] > M [i, j′]
and M [i′, j] ≤ M [i′, j′]. Rearranging these gives M [i, j] −M [i, j′] > 0 and M [i′, j] −M [i′, j′] ≤ 0. Summing
these inequalities violates the Monge property.

8 21 35 15 29

74 13 19 29 53

21 7 27 19 75

63 43 19 11 75

10 7 19 2 4




Figure 3.4: 2× 2 submatrices highlighted is not totally monotone.

3.3.2 Overview of the SMAWK Algorithm

The SMAWK algorithm runs in O(n + m) time. It consists of two main procedures that reduce the problem
size.

• SPARSIFY: If the matrix is tall (n > m), this procedure eliminates rows. It recursively finds the
minimum for odd rows, then uses monotonicity to find minimum for even rows in O(n + m) time. This
reduces the problem from size n×m to n/2×m.

• REDUCE: If the matrix is wide (n ≤ m), this procedure eliminates columns that are guaranteed not to
contain a row minimum. It reduces an n×m matrix to an n× n matrix in O(n + m) time.

The time complexity follows the recurrence:

T (n,m) ≤

{
O(n + m) + T (n/2,m) if n > m

O(n + m) + T (n, n) if n ≤ m

This recurrence solves to O(n + m).

3.3.3 The REDUCE Procedure

The Reduce procedure works by identifying and eliminating ”dead” columns. The key observation comes from
comparing two entries in the same row, M [i, p] and M [i, q] with p < q.

• If M [i, p] ≥ M [i, q], then due to the total monotonicity property, for all rows j ≥ i, we must have
M [j, p] ≥M [j, q]. This means column p cannot contain the leftmost minimum for any row from i onwards.
We say column p is ”dead” for these rows.

• If M [i, p] < M [i, q], then for all rows h < i, we must have M [h, p] < M [h, q]. This means column q cannot
be the leftmost minimum for any row from 1 to i.



3-6 Lecture 3: Advanced Dynamic Programming

Algorithm 2 Reduce(M)

1: S ← empty stack
2: for k ← 1 to m do
3: while stack is not empty AND M [size(S), S.top()] ≥M [size(S), k] do
4: S.pop()

5: if size(S) < n then
6: S.push(k)

return columns in S

Reduce maintains a stack of ”surviving” column indices. It iterates through columns k = 1, . . . ,m, deciding
whether to pop from the stack or push the new column k. The algorithm works as follows. Let t be the number
of items on the stack, and let the top of the stack be column S[t]. When considering a new column k:

1. We compare M [t, S[t]] with M [t, k].

2. If M [t, S[t]] ≥ M [t, k], then column S[t] is dead for row t and all subsequent rows. We can pop it and
repeat the comparison with the new top of the stack.

3. If M [t, S[t]] < M [t, k], column S[t] might still be the minimum for row t. Column k cannot be the
minimum for row t (or any previous row), but it could be for a subsequent row. We stop popping and
push k onto the stack (if there is still room, i.e., t < n).

Each column is pushed once and popped at most once. The number of comparisons is therefore O(n+m). The
final stack contains at most n columns, which are guaranteed to contain all the row minimum.

* *

S[1] S[2] S[3] S[4] S[5] S[6] k

* ≤ *

S[1] S[2] S[3] S[4] S[5] S[6] S[7] k

Figure 3.5: updating the stack in Reduce. The first table shows the state before considering column k. The
second table shows the state after processing column k.


