CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 2 (Sep 8, 2025): Dynamic Programming

Lecturer: Mohammad R. Salavatipour Scribe: Parsa Zarezadeh, Mohsen Mohammadi

This lecture continues the discussion on Dynamic Programming (DP) by exploring several classic problems
that can be solved efficiently using this technique.

2.1 Maximum Subarray Problem

Given a sequence of numbers A[l], A[2],..., A[n], find a contiguous subarray that has the maximum sum.
In other words find the indexes i and j that argmax Y 7_. A[k]. To give an example, look at Figure 2.1:
1<i<j<n

6 3 —12 1 13 7 41 -4 15 44 =5 2 1

87

Figure 2.1: A diagram representing the maximum subarray and its sum.

2.1.1 Simple Approach

A naive approach would be to compute the sum for every possible pair of indices (4,7). This results in
a time complexity of ©(n3). We can improve this by first computing prefix sums. For all 1 < i < n,
let S[i] = 23:1 Alj]. Then, for each pair (4,j), the sum of the subarray A[i..j] can be found in O(1) by
computing S[j] — S[i — 1]. Computing the prefix sum takes ©(n), and the whole prefix sums technique
improves the total time complexity to ©(n?).

2.1.2 Linear Time Solution (Kadane’s Algorithm)

A more efficient DP solution exists that runs in linear time. It was developed by Jay Kadane in 1978.

Let B[j] be the maximum sum of a subarray that ends at index j. The overall goal is to find max; B[j]. The
recurrence relation is as follows:

LA if j=1
Bl = {max{A[j],A[j] +B[j-1]} ifj>1

For the base case, B[1], the only possible subarray ending at the first position is the element A[1] itself. To
calculate BJj] for any index j, there are two possibilities for the maximum subarray ending at that position.
The first is a new subarray starting at j, which consists of only the element A[j]. The second possibility is
to extend the maximum subarray that ends at the previous index, j — 1, by adding A[j]. The value of this
extended subarray would be A[j] + B[j — 1]. Therefore, B[j] correctly finds the maximum subarray sum by
taking the greater of these two options. From this recurrence, it is easy to derive that Kadane’s algorithm
runs in ©(n) time, as it requires only a single pass through the array.
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2.1.3 Extension to Matrices

The Maximum Submatrix problem is a direct extension of the Maximum Subarray problem. Given a matrix
of numbers A, «,, the goal is to find a contiguous rectangular submatrix whose elements have the largest
possible sum. To give an example, look at Figure 2.2:

5 3 -9 -3 7
-3 6 -9 -8 3

—4(2 -3 4] 3
8|7 2 9|6

33

Figure 2.2: An example of 5 x 5 matrix and it’s maximum submatrix sum

A naive brute-force algorithm would be to calculate the sum for every possible submatrix. In an n x n grid,
there are ©(n*) possible submatrices, and this approach has a complexity of ©(n*). However, by building
upon the solution to the previous problem, we can achieve a much more efficient algorithm with a time
complexity of ©(n?).

To do this, we first implement a simple idea from the previous problem: prefix sums, but now applied to
each row. For all 1 < i,j < n, we define the row-prefix sum as S; ; = > 7_; A; . These values can be
computed in O(n?) time.

The next key idea is to reduce the 2D problem to a series of 1D problems. This is done by iterating through all
possible pairs of left and right columns that could form the vertical boundaries of our optimal submatrix. For
each fixed pair of columns j and j' (where j < j'), we create a temporary 1D array, which we will call L. For
each row ¢ (where 1 < ¢ < n), the corresponding element in this array is calculated as L; = S; jy — S; ;—1.To
give an example, look at Figure 2.3:

J J
5 3 -9 -3 7 -9
-3 6 -9 -8 3 11
A=| 2 -1 8 5 -7 L=| 12
-4 2 -3 4 3 3
-8 7 2 9 -6 18

Figure 2.3: Fixing columns j = 2 and j' = 4 to create a temporary 1D array L of row sums.

Once the left and right column boundaries are fixed, finding the optimal submatrix for that selection be-
comes a maximum subarray problem on the temporary array L. This 1D problem can be solved efficiently
using Kadane’s algorithm. Since the overall algorithm iterates through all possible pairs of left and right
boundaries, it is guaranteed to find the maximum submatrix sum.

The complexity analysis is as follows. Iterating over all possible pairs of left and right boundaries requires
©(n?) iterations. Within each iteration, generating the temporary array L and solving the maximum subarray
problem on it both take ©(n) time. Therefore, the total running time for the entire algorithm is ©(n?).
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2.2 Segmented Least Squares

2.2.1 Single Straight Line

Given a set of n points P = {(z1,11), (x2,Y2), .-, (Tn, yn)}, sorted by their x-coordinates (x; < zp < --- <

Zn), the initial problem is to find a single stralght line that best fits these points. Let the line be L, deﬁned
by the equation y = ax + b, where a is the slope and b is the y-intercept. To find the best fit, we must
choose the line L that minimizes the sum of the squared vertical distances from each point to the line (An
example is given in Figure 2.4). This error metric is often called the Sum of Squared Distances (SSD). In
other words, we want to find the line L that minimizes the following error function:

n

SSD(L, P) = > (i — (ax; +1))*

=1

This is a classic calculus problem that can be solved by taking partial derivatives of the error function with
respect to a and b and setting them to zero. The solution gives the following formulas for the optimal slope
and y-intercept:

n(Yziyi) — Qi) Qo vi) b— 2y —a(d xi)
n(>x7) — (30 wi)? n

> T

Figure 2.4: A set of points with a best-fit line. The red vertical segment shows the error for one point.

2.2.2 Multiple Straight Lines

A complication with the simple least squares method is that the data points may not lie on a single straight
line, but rather on multiple consecutive line segments. The objective is to partition the points and find a
sequence of lines that best fits the data. An example of this is shown in Figure 2.5.

Figure 2.5: A set of points best described by three distinct line segments.
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The function to optimize is a trade-off between the fit of the lines and the number of lines used. We want to
minimize the total error, which is defined as: (Sum of SSD for all segments)+C x (number of line segments),
where C' is a penalty factor for each new segment introduced.

A dynamic programming approach can solve this problem efficiently. To do so, we first define our subprob-
lems. Let Opt[j] be the minimum cost for the optimal solution covering points Pi, ..., P;. The ultimate goal
is to compute Opt[n|. For any set of points from P; to P; (where 1 < i < j < n), let e;; denote the minimum
SSD for a single best-fit line through just those points. To compute Opt[j], we consider all possible final
segments that could end at point P;. If the last segment in an optimal solution covering points F;, ..., F;,
then the total cost of this solution is the cost for that specific segment (e;; + C') plus the optimal cost for all
points before it, which is Opt[i — 1]. We must find the minimum cost over all possible start points ¢ for this
final segment. This logic gives us the following recurrence relation:

opitj] = {° itj=0
Pl = minlgigj{eij—i—C—}-Opt[i—l]} lfj >0

A naive implementation of this recurrence would take O(n3) time, as there are O(n?) pairs of (i,5) to
consider, and calculating each e;; can take O(n) time. However, the e;; values can be computed more
efficiently, reducing the overall time complexity to O(n?).

2.3 Maximum Independent Set on Trees

Given a graph G = (V, E) and a weight function on its vertices, w : V — RT, the Maximum Weighted
Independent Set problem is to find a subset of vertices V' C V such that no two vertices in V' are adjacent,
and the sum of the weights of the vertices in V' is maximized. This problem is extremely difficult on general
graphs, but can be solved efficiently with dynamic programming if the graph is a tree. An example is shown
in Figure 2.6:

Figure 2.6: A weighted tree. The nodes circled in red form a maximum independent set.

To apply dynamic programming, we must first establish a structure for our subproblems. First, we root the
given tree T at an arbitrary node. For each vertex v € V, let C,, denote the set of its children, and let T}, be
the subtree rooted at v. The subproblem is then defined as follows: let M[v] be the maximum weight of an
independent set within the subtree T,. The recurrence relation for Mv] is based on two cases:

1. If vertex v is not included in the independent set, then we are free to take the optimal solutions for all

of its children. The total weight in this case is: ), o Mu].
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2. If vertex v is included in the independent set, then none of its children can be included. Therefore,
we take the weight of v, and add the sum of the optimal solutions for all of its grandchildren (where
grandchildren are the children of v’s children). The total weight is: wy, + >, co D e, M(U'].

The value of M[v] is the maximum of these two cases. The base case is for a leaf node v, where the only
independent set is the node itself, so M[v] = w,,. This can be formulated more neatly as:

M[v] = Wy if v is a leaf
v =
ax {Zuecv M [u]7 Wy ZUGCU Zu’ECE M[ul]} otherwise

To analyze the running time, it is easy to see that each subproblem M|v] is computed only once. Since
the calculation for each node involves summing values from its children and grandchildren, and each node
appears as a child or grandchild at most twice, the work is amortized across the tree. This results in a total
running time of O(n).

2.4 Sequence Alignment

Sequence alignment is a method used to measure the similarity between two strings, with common appli-
cations in spell checking and bioinformatics. The Edit Distance provides a quantitative measure of this
similarity, defined as the minimum cost required to transform one string into another (by introducing gaps
and mismatches). Before we dig deeper, let us see an example in Figure 2.7:

S T A R W A R S

S T A R T R E K

4 mismatches, 0 gaps

S T A R W A R S -

S T A R - T R 1z K

2 mismatches, 2 gaps

Figure 2.7: Two possible alignments for the strings STARWARS and STARTREK.

To define the edit distance formally, let’s consider two strings, X = z1,...,z,, and Y = y1,...,y,, over
some alphabet ¥. An alignment of these strings is a set M containing pairs of indices (4, j), which represents
that character x; is matched with character y;. A valid alignment must satisfy two conditions:

1. Each character (represented by its index) can appear in at most one pair in M.

2. There are no crossings. This means that if we match z; with y; and z;; with y;/, and we have i < 7/,
then it must also be that j < j/. It is not permitted to have j' < j, as illustrated in Figure 2.8:

Figure 2.8: A crossing in a sequence alignment. Where ¢ < i, j' < j and (i,7),(i',j') € M
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The cost of an alignment is determined by two types of operations. The first one is a mismatch, which
means matching a character p with a different character ¢. This incurs a mismatch penalty, denoted a,,
(We consider that for all p € ¥, a, = 0, meaning that a match has no penalty). The second one is a gap
that happens when a character is not matched to any other character. This incurs a fixed gap penalty, d.
The total cost of an alignment M, denoted Cost(M), is the sum of the costs of all mismatches and all gaps.
This is formally defined as:

Cost(M) = Z Oy, + Z 0+ Z )

(i,5)eM x; is unmatched y; is unmatched

The goal of the sequence alignment problem is to find an alignment M that minimizes this total cost. To
give an example of the best alignment, look at Figure 2.9:

T T A C A G T C C A G (¢ A

T - A C A G G A C - G C T

Cost = 2§ + arg +aca +aar

Figure 2.9: Two DNA sequences and the best alignment for them

2.4.1 Dynamic Programing Approach

To solve this problem using dynamic programming, we first define our subproblems. Let A[i, j| represent
the minimum cost of aligning the prefix X; = x; ...x; with the prefix Y; = y; ...y;. Our goal is to compute
Alm,n]. To compute Ali, j|, we consider three possibilities for the alignment of the final characters:

1. z; is matched with y;: The cost is the penalty for matching z; with y; plus the cost of the best
alignment for X;_; and Yj_;.

2. x; is aligned with a gap: The cost is the penalty for a gap plus the cost of the best alignment for X;_
and Y;.

3. y; is aligned with a gap: The cost is the penalty for a gap plus the cost of the best alignment for X;
and Y;_;.

The value of A[i, j] is the minimum of these three options. The base cases correspond to aligning a sequence
with an empty string, which yields A[i,0] = ¢ - and A0, j] = j - 0. Therefore, the complete recurrence
relation can be formulated as:
Qgy; + Ali — 1,5 — 1] (match/mismatch)
Afi,jl =min ¢ § + A[i — 1, §] (gap in Y)
§+ Ali,j —1] (gap in X)

This algorithm requires filling an m X n table, and each element of the table takes ©(1) to compute, resulting
in a time and space complexity of ©(mn).

2.4.2 From Recurrence to Graph

The Sequence Alignment problem can be solved using dynamic programming by visualizing the solution
space as a grid or a directed acyclic graph (DAG). We can construct an (m + 1) x (n + 1) grid where each
node (7, j) represents the state of having aligned the prefix X; with Yj.
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The goal is to find the minimum cost path from node (0,0) to node (m,n). Each possible move between
adjacent nodes in the grid corresponds to one of the three alignment operations, and each move has an
associated cost (or edge weight), as shown in Figure 2.10:

Figure 2.10: The grid representation for sequence alignment, in which the horizontal and vertical moves cost
d, while diagonal moves cost .y,

2.4.3 Can We Improve the Complexity?

The short answer for improving the time complexity is "no”, and it is because of the following theorem
proved by Backurs and Indyk:

Theorem 1 ([BI15]) If we can solve the Edit Distance problem in O(n?~¢) time for any constant € > 0,
then we can also solve SAT instances with N wvariables and M clauses in MOMW20=9N time for some
constant § > 0.

Such an algorithm for SAT would refute the Strong Exponential Time Hypothesis (SETH), which conjectures
that no such algorithm exists. Therefore, under the assumption that SETH is true, we cannot solve the Edit
Distance problem in truly sub-quadratic time. This makes the standard ©(nm) dynamic programming
solution essentially optimal.

But fortunately, the ©(mn) space complexity can be improved. A clever idea combining dynamic pro-
gramming with divide and conquer, known as Hirschberg’s algorithm, can reduce the space requirement to
O(m + n). To understand how, let’s first consider the problem of finding only the value of the optimal
alignment, not the alignment itself.

Observation 1 To compute the value f(i,j) in our DP grid, we only need the values from the previous row
and column.

From the observation mentioned, we can compute the entire grid, by only maintaining the current and
previous column at each step. This requires only ©(m) space, because at each step we only keep f(i,j) for
two columns at a time. However, this method only finds the value of the optimal path and does not store
enough information to reconstruct the optimal alignment path. To find the alignment path within linear
space, more ideas are needed.

Let g(i,j) denote the length of the shortest path from node (i, j) to the end node (m,n). This is equivalent
to the cost of the best alignment for the suffixes z;,..., %, and y;,...,¥y,. A similar DP formulation (a
backward DP) can be used to compute these g(i,j) values.
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Observation 2 The length of the shortest path from (0,0) to (m,n) that passes through an intermediate
node (i,7) 1s exactly f(i,7) + g(i,7).

These observations lead to a divide-and-conquer strategy.

Lemma 1 Let k be a column index, typically k ~ n/2. Let q be the row index that minimizes the sum
flg, k) + g(q, k) over all possible row indexes. Then there exists a minimum-cost path from (0,0) to (m,n)
that passes through the node (q, k).

The D&Q+DP algorithm is as follows: to find the path, we first identify this midpoint (¢,n/2). For all
0 <i < m, we can compute all f(i,n/2) values using the space-efficient forward DP and all g(i,n/2) values
using the space-efficient backward DP. We then find the index ¢ that minimizes their sum. Once (q,n/2)
is known to be on an optimal path, we recursively find the optimal path from (0,0) to (¢,n/2) and from

(4,n/2) to (m,n).
Lemma 2 The space complexity of this algorithm is ©(m + n).

Proof. Each recursive call needs linear space to compute the f(i,n/2) and g(,n/2) values for the relevant
subproblem. The space required to store the coordinates of the midpoints found is also linear, as the number
of recursive calls is O(n). |

Lemma 3 The running time of this algorithm is ©(mn).

Proof. Let T(m,n) be the time complexity. The work done at the top level involves two passes over a grid
of size m x n/2, which takes ¢ - mn time for some constant c¢. This leads to a recurrence:

T(m,n) <c-mn+T(q,n/2)+T(m—q,n/2)
We can prove T'(m,n) < k- mn by strong induction for some constant k.
T(m,n) < c-mn+ k- q(n/2) + k(m — q)(n/2)

T(m,n) <c-mn+k-m(n/2)=(c+k/2)mn

This is less than or equal to kmn if we choose k > 2¢. Thus, the total time remains ©(mn). ]

2.5 Optimal Binary Search Tree

Suppose we have a sequence of n distinct keys, sorted as k1 < ky < .-+ < k,, that we want to store in
a Binary Search Tree (BST). Each key k; has an associated probability or frequency p; of being searched
for. Additionally, we may search for values that are not in the set of keys. These are represented by n + 1
?dummy keys,” dg,d1,...,d,, where dy < k1 < dy; < ky < dy < --- < k, < d,. Each dummy key d; has a
search frequency ¢;. The sum of all probabilities must be 1: >0 | p; + > 1" ;g = 1.

The expected cost of a search in a given tree T' depends on the depth of the nodes. Let dr(x) be the depth
of a node z (with the root at depth 0). The expected cost is:

n

Elcost of T| = Z(dT(ki) + 1)p; + Z(dT(di) +1)g =1+ ZdT(ki)pi + ZdT(di)qz‘
i=1 i=0

i=1 =0

The goal is to build a tree T' that minimizes this expected search cost. An example is given in Figure 2.11:
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do

dq

dy

ds

d3

i| 0 1 2 3 4
pi 018 022 0.03 0.12
¢ | 0.0 011 0.09 0.05 0.19

2-9

Figure 2.11: An example of an Optimal Binary Search Tree with the corresponding frequencies for its keys
and dummy keys shown in the table.

2.5.1 Dynamic Programming Approach

We can observe that, this problem exhibits optimal substructure, meaning that in an optimal BST a subtree

T that contains keys k;
dynamic programming.

5.

Let OJi, j] be the minimum expected search cost for a BST over the keys k;, .

Z{:i_l q: be the sum of frequencies in this subproblem. If k, is the root, the cost is:

Oli,jl = pr + (Oli,r =1 + fli,r = 1)) + (O[r + 1,51 + f[r + 1,5]) = Oli,r = 1] + Olr + 1, 5] + fi, j]

Since we do not know the optimal root r, we must try all possibilities:

O[Z’]] :{

qi—1
minigrgj{O[Z',T - 1] + 0[7’ + Lj] + f[%j]}

ifj=i—1
if j >

--7kj- Let f[l,_]] =

.., k; then this subtree optimum for those keys. Based on observation, we can use

i:i D+

The values for f[i, j] can be pre-computed in O(n?) time. A DP algorithm can then fill the table for O[3, j].

A pseudo-code of the algorithm is given below:

Algorithm 1 Opt-BST-DP(p, ¢,n)

1: fori+ 1ton+1do

Oliyi— 1] < ¢;—
: for [ <+ 1 ton do

j—i+l-1
Oli, j] + o0

—= = =
Mo

return O[1,n]

1

f['é,l - ]-} S~ Qi—1

fori<1ton—I0l+1do

f[Za.]} <~ f[Zm] - 1} +pj +Qj

for dor < itoj

temp < O[i,r — 1]+ O[r + 1, j] + f[¢,j]

if temp < O[i, j] then
Oli, j] + temp
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A memoized, recursive version can also be implemented:

Algorithm 2 Memoized-Opt-BST(i, )
if O[i, j] is already calculated then return O3, j|
Oli, j] + >
: for r <+ i to j do
temp < Memoized-Opt-BST (4,7 — 1) + Memoized-Opt-BST(r + 1, j) + f[3, /]
if temp < O[i, j] then
Oli, j] + temp
return O[i, j]

S Gk W

Assuming the f[i, j] values have been pre-computed, a step required for memoized versions, the time com-
plexity of the presented algorithms is ©(n?). This naturally leads to the question of whether a faster approach
is possible, a topic that will be explored in the following lecture.
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