CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 1 (Sep 3, 2025): Stable Matching, Greedy & Dynamic Programming

Lecturer: Mohammad R. Salavatipour Scribe: Keven Qiu and Mohammad Salavatipour

1.1 Introduction

We start by dicussing some classic algorithm design techniques, namely greedy and dynamic progrmaming.

1.2 Stable Matching

This is a classic problem, also known as stable marriage, that was introduced in a paper by Gale and Shapley in
1962 (two economists). The original question was posed in the setting of assignment college admission process
but in practice it arises in many settings. Here we consider the problem in the setting of assignment of hospitals
and medical students.

Suppose we have n doctors and n hospitals that need to be matched: each doctor to exactly only hospital and
each hospital be given exactly one doctor. Such an assignment is called a matching. Each doctor d has a
preference (orderd) list of hospitals from the most desirable to the least desirable. Similarly, each hostpital h
has an ordered list preference of all the doctors.

Definition 1 A pair (h,d) for hospital h and doctor d is called unsable if h prefers d over the doctor d' that is
assigned to it and d prefres h over the hospital s/he is assigned to.

For example consider having 3 hospitals {h1, ha, h3} and doctors {d, d2, ds} with the following preference lists:

1st | 2nd | 3rd 1st | 2nd | 3rd
hi| di | da | ds dy | ha | hi | hs
ha | da | di | d3 da | hi | ha | h3
hy| di | da2 | ds ds | hy | ha | h3

Hospitals’ preference list and doctors’ lists

Suppose we match them in the following way: (hi,ds), (he,d2), and (hs,d;). Then the pair hy,ds is unstable
since hy prefers ds over d3 (we say do > ds3) and also do prefers hy over hg (so hy > hg). It is clear to see that
if there is an unsable pair then h,d would prefer to break their current assignment and be paired up.

Definition 2 A matching M is stable if it does not have any unstable pair.

In the context of ”stable marriage” we have n men and n women with their preference lists and the goal is to
find a matching of these n men to n women so that there is no unstable pair. It is not immediately obvious
that given the preference lists of doctors and hospitals as input there always exists a stable matching. National
resident matching program (NRMP) was centralized to match medical school students to hospitals. In 1952 it

1-1

1-2 Lecture 1: Stable Matching, Greedy & Dynamic Programming

began to fix unraveling of offer dates. Originally the algorithm used was called the “Boston Pool” algorithm.
Here we discuss an algorithm due to Gale-Shapely that proves the existence of a stable matching and also finds
one (efficiently).

Algorithm 1 Gale-Shapely Deferred Acceptance Algorithm

Input: Preference list for hospitals and doctors.
Output: Find a stable matching M.

1: M=0

2: while there is an unmatched hospital A do

3 h offers to the next doctor on its list it has not made an offer before
4 if d has no job then Add (h,d) to M

5: if d has job with A’ and &’ > h then Do nothing

6: if d has job with A’ and h > h’ then

7 Remove (h',d) from M and add (h,d) to M

8: return M

So each hospitals goes through their list (once) and propose in that order. It is not clear that M at the end is
a (perfect) matching, let alone a stable matching.

Lemma 1 At the end, M is a matching.

The proof follows from the following two simple observations:

Observation 1: Once a doctor gets a job, then they never become jobless (since they only abandon a hospital
h to go to another one A’ that is higher in their list).

Observation 2: No hospital is matched to more than one doctor.

So at the end, if there is a hospital h that is no matched to any doctor, then there is a doctor d that is not
matched to any hospital. But this means h has never proposed to d while A must have gone through its entire
list (a contradiction).

Next we show why M must be a stable matching. Note that in this algorithm hospitals go "down” in their
preference lists and doctors go "up” in their list (i.e. a doctor changes only to a better hospital).

Lemma 2 M is stable at the end.

Proof. By way of contradiction suppose that there is an unstable pair: say (d, h) and (d’, h’) are paired in M
while for d: ' > h and for h': d > d'.

Case 1: I/ never offered to d. This cannot happen since d is higher on the list of A'.
Case 2: I/ made an offer to d: if d rejected then d must be matched to something higher and since it will not

go down in his/her list it can’t be matched to h later. If d accepted h’ then it will not switch to h (or
anything lower than h’).

This matching is in favor of hospitals. We can do the algorithm based on preference lists of doctors instead.

Lecture 1: Stable Matching, Greedy & Dynamic Programming 1-3

\J

Figure 1.1: A set of jobs; blue ones are compatible.

1.3 Greedy Algorithms

Greedy algorithms are used for optimization problems (e.g. the coin change problem, shortest paths in weighted
graphs or computing a minimum spanning tree, many scheduling problems). Some characteristics of these
algorithms are: decisions are made locally and often never changed; they are usually efficient /fast and the proofs
are often based on induction and uses an exchange argument. However, they have very limited applicability
(i.e. for most problems the greedy methods don’t work). Below we see some examples for which this method
works well.

1.3.1 Interval Scheduling

Scheduling problems are among the most well studied (and applied) problems in optimizations. Suppose we
are given a set of n jobs J, with each job j having a start time s; and finish time f;. We say two jobs are
compatible if their intervals don’t overlap (so they could be run on a single processor that can run one job at a
time). The goal is to find a largest set of compatible jobs (see Figure 1.1).

There are many ways one may try to design a greedy algorithm for this. For instance, one may try to sort the
jobs based on s;, or duration (i.e. f; —s;) and greedily pick them as long as they are compatible with the
selected ones so far; or sor based on f; and do this.

If one tries to sort based on s; (small to large) then it will fail because the example in Figure 1.2.
Sorting by interval length (from smaller to larger) will fail as shown in Figure 1.3

It turns out if we sort by finish time (smaller to larger) then it gives us the optimal schedule. In other words at
any given time, pick the job that is feasible (with the jobs selected so far) and has the earliest finish time.

1-4 Lecture 1: Stable Matching, Greedy & Dynamic Programming

Figure 1.2: Bad example for sorting based on s;

Figure 1.3: Bad example for sorting based on f; — s;

First, note that the time complexity of this algorithm is O(nlogn): it takes this time to sort them. Also in
order to check if each job being considered is compatiple with the schedule so far we only need to keep track of
the finish time of the last job added and compare that with the start time of the current job (in O(1) time).

Theorem 1 The greedy algorithm given finds an optimum schedule.

Proof. By way of contradiction assume the greedy is not optimal. Let iq,...,4; denote set of jobs selected
by greedy and ji,..., jm denote set of jobs in an optimal solution with i, = jq,...,4, = j, for largest possible
value of r. Clearly m > k. Now j,11 in optimum must finish after ¢,,1 because 7,1 has the earliest finish time
among all the jobs that are compatible with 41,...,%,.. So we can replace j,4+1 in optimum with ¢,41. This does
not interfere with the jobs scheduled later as they all start after the finish time of j,; and hence after i,4;.
This creates another optimum with more common jobs with Greedy, contradicting the definition of r.

i in i i1 i

Figure 1.4: Job j,+1 can be swapped with ¢,41 in optimum

In fact one can prove by induction that for any m > 1, after our algorithm completes m intervals, an optimum
has completed < m intervals.

One can ask an alternative question: what if we have to schedule all the jobs but on possibly more than one
machine, while using minimum number of machines?

Exercise: Think of another greedy algorithm for this variant that minimizes the number of machines on which
all the jobs can be scheduled.

1.3.2 Minimum Lateness Schedule

Let’s consider another scheduling problem that tries to scheules all the jobs while minimizing the lateness of
them. In this problem we are given a set of n jobs J : j1,...,j, each having a length t; (processing time) and
deadline d;. If job ¢ starts at time s; then finishes at time f; = s; +t; and will have lateness ¢; = max{0, f; —d;}.
The goal is, find an ordering of the jobs to run on a machine (and start times for them) that minimizes max;{ ¢;}.
We can solve this by greedy. Sort by deadline, i.e. d; < dy <--- <d,. (see example in Figure 1.5)

Lecture 1: Stable Matching, Greedy & Dynamic Programming 1-5

Algorithm 2 Greedy Interval Scheduling
1: Sort jobs based on finish time, f; < fo <--- < f,
2: S=10
3: for i =1tondo
4: if [s;, f;] does not conflict with anything in S then
5
6

Addito S
: return S

jobs [1]2] 3 |4]5] 6

t; [2]3[1]1[3]4

d; [5]8]12]1]8]11
JJ'4‘ J1 ‘ J2 ‘ Js ‘js‘ Jo ‘ .-
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.5: A schedule for 6 jobs. Jobs 5 and 6 have lateness of 1 and 3 in this schedule, respectively.

First, note that in any schedule, if there is idle time between two scheduled jobs we can start the latter job right
after the finish time of the former without increasing the lateness. Therefore we can assume that:

Observation 1 There is an optimal solution with no idle time.

In a schedule S an inversion is a pair of jobs ¢ and j where j comes before ¢ but ¢ has a deadline earlier than
deadline of j. The following two observations are immediate.

Observation 2 The earliest-deadline-first schedule is the unique idle-free schedule with no inversions.

Observation 3 If an idle-free schedule has an inversion, then it has an adjacent inversion. (Think of it like
sorting, if it is not sorted, two adjacent items are in the wrong order.)

The key observation that helps us to complete the proof is the following. If we exchang two adjacent inverted
jobs i and j it reduces the number of inversions by 1 and does not increase the maximum lateness. To see
this suppose %, j form an inversion with finish times f; and f; = f; +¢; and lateness ¢; and ¢;. Suppose we
swap 1,j. Let EQ,E; be the new lateness of these jobs. Note that the lateness of other jobs do not change and
max{¢;, ¢’} < max{l;, (;}

2]

Theorem 2 Farliest deadline-first schedule S is optimal.

Proof. Define S* to be an optimal schedule with the fewest inversions. We can assume S* has no idle time.
There are two cases:

1. S* has no inversions: Then S = S*.

2. S* has an inversion: Let i,j be an adjacent inversion. Exchanging jobs i and j decreases the number of

inversions by 1 without increasing the maximum lateness. This contradicts the fewest inversion assumption
of S*.

1-6 Lecture 1: Stable Matching, Greedy & Dynamic Programming

1.4 Dynamic Programming

Dynamic programming (DP) is one of the most powerful techniques in design of efficient algorithms. It can
sometimes be quite involved and intricate. The basic principle is to break the problem into smaller subproblems,
then solving the subproblems and storing the values or solutions to these subproblems into a table, and using
these partial solutions recursively to solve bigger subproblems. It often involves some optimization as well.
Perhaps the most important step is to identify the proper subproblem and define a table to store the values of
the subproblems. Later on we will see how DP can be used to design approximation algorithms for problems
that are otherwise difficult to solve exactly.

1.4.1 Weighted Interval Scheduling

As a first example we look at a generalization of the first scheduling problem,

Weighted Interval Scheduling Problem: In this problem we are given a set J of n jobs each with a
start time s;, finish time f;, and w; as weight of job i. The goal is to find a subset of compatible jobs (i.e.
non-overlapping) with maximum total value.

We saw that greedy works well when w; = 1 for all jobs. This is not the case with weights. See Figure 1.6 for
bad examples for two natural greedy algorithms.

wy = 1 w; =2 we =2
wsy = 100 ws =3

Figure 1.6: a) For the instance on the left earliest-finish-time first fails; b) for the instance on the right largest
w; first fails.

Consider the jobs in increasing order of finish time; f; < fo < f,,. For each job j, let p(j) be the largest index
i < j such that job ¢ does not overlap with j (p(j) = 0 if no such job exists). For now assume our goal is to find

the value of an optimum solution (instead of the schedule itself). Let opt[j] denote the max weight of a schedule
that uses only a subset of jobs in {1,...,;j}. Our goal is to compute opt[n]. It is easy to see that opt[l] = w;.

When considering job 7,
1. If optimum of the first j jobs does not include j.
opt[j] = opt[j — 1]

2. 7 If j belongs to the best schedule of the first j jobs, the it must be the last in that schedule and we have
to find the best schedule of jobs 1,...,p(j).

opt[j] = w; + opt[p(j)]

We do not know which of the two cases, so opt[0] = 0 and

opt|7| = max opt[j N 1]
ptlj] {opttpw o,

We can fill in the table using this recurrence as follows:

Lecture 1: Stable Matching, Greedy & Dynamic Programming 1-7

Algorithm 3 Weighted-Interval-DP
Sort jobs such that f; < --- < f,
Compute p(j) for each j
o[0] =0
fort:=1ton do

Oli] = max{O[i — 1], w; + O[p(i)]

return O[n]

This computes the optimum in O(nlogn). To find the actual schedule, we can trace back the selection of jobs.
More specifically, starting at O[n] we check whether O[n] = O[n — 1] or not. If not then n belongs to optimum
and we jump to p(n) and check O[p(n)]. Else (if O[n] = O[n — 1]), it means n is not part of the optimum and
we continue from O[n — 1].

