
CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 6 (Sep 22 2025): Randomized Algrithms
Lecturer: Mohammad R. Salavatipour Scribe: Lyndon Hallett, Haoxin Sang

6.1 Introduction

In the next few weeks we will talk about randomized algorithms specifically. There are verious reasons why
randomized algorithms are useful:

• Speed: Are often faster than deterministic algorithms, even if their worst-case time is worse. An Example
of this is QuickSort is the fastest sorting algorithm in practice even though its worste case running time
is quadratic (has expected O(n log n) time vs).

• Simplicity: Are typically eeasier to implement (and faster as a result).

• Necessity: For many problems (e.g., online algorithms) these are the only algorithms that can solve the
problem as it is the only way we can beat an adversary. Often it can be proved that any deterministic
algorithm will be bad. There are other situations that we don’t know of any deterministic algorithm at
all, e.g. checking if a multivariate polynomial is identical to zero is hard deterministically, but easy with
randomness.

We should note that study of Randomized algorithms differs from average-case analysis. In average-case analysis,
we assume some distribution on the input (e.g., uniformly random) and study the performance of an algorithm
under that distribution. However, when designing randomized algorithms, we do not place such assumptions
(and is working for all settings).

Types of Randomized Algorithms:

• Las Vegas algorithms: Always find the correct answer, but their running time is a random function
that can vary. We then compute the expected running time. An example is Randomized QuickSort, which
runs in expected O(n log n) time, although the worst case is still O(n2).

• Monte Carlo algorithms: These may not always find the correct answer. We show that they find the
correct answer with some probability 0 < P < 1.

Note that for Monte Carlo algorithms, we can always increase the probability by running multiple independent
copies. The running time might also be bounded in expectation. Additionally, the two types of algorithms
are not strictly disjoint categories. For example, a Las Vegas algorithm can be converted to a Monte Carlo
algorithm by running it for a set time.

Paradigms for Randomized Algorithms:

• Avoiding adversarial inputs: randomly reorder the input.

• Fingerprinting & hashing: use smaller (randomly generated) fingerprints to compare large objects.

6-1

6-2 Lecture 6: Randomized Algrithms

• Random sampling: used in approximate counting of large sets, median finding, etc.

• Online algorithms / load balancing: spread the load among resources randomly to reduce cost and/or
time.

• Symmetry breaking: helpful for protocols in networks and avoiding deadlock in distributed systems.

• Probabilistic method: A very powerful technique in combinatorics. To show the existence, one can show
the probability of a carefully chosen one having the desired property we want is greater than zero (e.g.,
Lovász Local Lemma). There are methods to turn these into algorithms.

6.2 Probability Background

• Probability space S: A set S of possible outcomes of a (usually random) process.

– E.g., rolling a die: S = {1, 2, 3, 4, 5, 6}.

• Event E : Any subset of the probability space (E ⊆ S).

• Probability distribution: A function Pr : S 7→ [0, 1] such that
∑
e∈S Pr(e) = 1.

• Random variable X: A function from S to reals or integers. An example is the space of rolling a pair of
dice. Define X to be the random variable that is 0/1 depending on whether the parity of the sum of the
two faces is even/odd.

• Expected value: The expected value of X is defined as

E[X] = µ(X) =
∑
x

xPr[X = x].

• Variance: The variance of X is defined as

Var(X) = E[(X − µ(X))2]

= E[X2]− 2E[X · E[X]] + E[X]2 = E[X2]− E[X]2.

• Standard deviation: The standard deviation of X is defined as

σ(X) =
√

Var(X).

• Rules for E[·] and Var(·):

– Linearity of expectation: E[
∑
i αiXi] =

∑
i αiE[Xi].

– If X and Y are independent: E[X · Y] = E[X] · E[Y].

6.3 Simple Deviation Bounds

Theorem 1 (Markov’s Inequality) Let X be a random variable that takes non-negative values. For all t > 0,

Pr(X ≥ t) ≤ E[X]

t
,

or equivalently,

Pr (X ≥ tE[X]) ≤ 1

t
.

Lecture 6: Randomized Algrithms 6-3

Proof. Define an indicator random variable

I =

{
1, X ≥ t
0, otherwise

Since X ≥ 0, then I ≤ X
t . Therefore,

E[I] = Pr[I = 1] = Pr[X ≥ t] ≤ E
[X
t

]
=

1

t
E[X].

Theorem 2 (Chebyshev’s Inequality) For any random variable X and any λ > 0,

Pr(|X − E[X]| ≥ λ) ≤ Var[X]

λ2
,

or equivalently,

Pr(|X − E[X]| ≥ λE[X]) ≤ Var[X]

λ2E[X]2
.

Proof. First, notice that:

Pr(|X − E[X]| ≥ λ) = Pr((X − E[X])2 ≥ λ2)

≤ E[(X − E[X])2]

λ2
=

Var[X]

λ2
,

where the inequality holds by Markov’s inequality.

Use of Markov’s inequality is called the first moment method, and using Chebyshev’s inequality is called the
second moment method.

6.4 Karger’s Randomized Algorithm for Min-Cut

Definition 1 (Cut) Given an undirected graph G = (V,E), a cut is a partition of V into two non-empty
subsets S and S = V − S. The size of the cut, δ(S, S), is the number of edges between S and S. If the graph
has edge weights, the size of the cut is the sum of the weights of the edges crossing the cut.

Minimum Cut Problem: Find a cut (S, S) of minimum size. The size of the minimum cut is denoted by

λG = min
∅(S(V

|δ(S, S̄)|.

One can try to use Max-Flow-Min-Cut theorem to solve Minimum Cut. We can try each pair of vertices (s, t),
as source sink nodes respectively, and find a Min-s, t-cut.

If F (m,n) be the time complexity of Max-Flow in graphs with m edges (|E| = m) and n vertices (|V | = n),
then the running time of this approach is O(n2 · F (m,n)).

Remark 1 This can be improved to O(n · F (m,n)) by fixing one vertex s and computing max-flows from s to
all other vertices t.

6-4 Lecture 6: Randomized Algrithms

Remark 2 The time complexity for the Max-Flow problem has improved over a long line of research to almost
linear time O(m1+o(1)) [CKL+23].

We now present Karger’s randomized algorithm for the min-cut problem, which runs in Õ(n2) time [KS93].

Definition 2 (Contraction) Given an undirected graph G = (V,E), a contraction of an edge e = uv ∈ E
gives a multigraph G′ = G/e, where we contract nodes u, v into a single node in G′. All of the edges in between
u and v are deleted.

v1 v2

v3v4

G

v12

v3v4

delete

G′

Figure 6.1: Contraction of edge e = v1v2 in graph G.

To represent the multigraph, we can keep the multiplicity of edges between any two nodes.

Lemma 1 For any edge e ∈ G, any cut in G/e corresponds to a cut in G of the same size.

Proof. Consider any edge e = uv ∈ G and suppose it is contracted into v′ in G′. Any cut (S′, S′) in G′ has v′

either in S′ or S̄′. W.l.o.g., assume v′ ∈ S′. Now consider the cut (S, S) in G where S = (S′ − {v′}) ∪ {u, v}.
The edges crossing the cut remain the same, so the size of the cut is unchanged. That is, δ(S, S) = δ(S′, S′).

Corollary 1 For any edge e ∈ G, λG/e ≥ λG.

The above lemma and corollary suggest algorithm 1.

Algorithm 1 Simple Min Cut Algorithm

Input: Undirected graph G = (V,E).
Output: A set of edges corresponding to a minimum cut (S, S′) of size λG.

G0 ← G
i← 0
while Gi has > 2 vertices do

Pick a random edge e ∈ Gi
Gi+1 ← Gi/e
i← i+ 1

end while
return edges of Gi

Lecture 6: Randomized Algrithms 6-5

Figure 6.2: An example execution of Algorithm 1. In each step (following top-left to the bottom-right), an
randomly selected edge is contracted (highlighted in red).

We now discuss the time complexity of Algorithm 1. Note that the algorithm will perform n − 2 iterations of
the while loop, until we have two components remaining. Each contraction step can be done in O(n) time, as
there are at most O(n) edges that can change. Therefore, the total running time is O(n2).

Applying Lemma 1 inductively, along with Corollary 1, implies the following statement.

Corollary 2 Every cut in Gi, for 0 ≤ i ≤ n − 1, corresponds to a cut of the same size in G. Furthermore,
λGi ≥ λG.

It is also a fact for every graph G, if λG = k then m ≥ kn
2 . Using this fact, we obtain the following.

Corollary 3 |E(Gi)| ≥ (n−i)k
2 .

Now suppose C ⊆ E is a fixed min-cut of G. Clearly, the probability that the algorithm returns C is the same
probability that none of the edges of C are contracted. Let |C| = k.

Let εi be the event that we didn’t pick any edge of C in iteration i. Therefore, since G has at least kn
2 edges,

then

Pr(ε1) ≥ 1− k
nk
2

= 1− 2

n
.

6-6 Lecture 6: Randomized Algrithms

For general i, we have

Pr
(
ε1|

i−1⋂
j=1

εj

)
≥ 1− 2

n− i+ 1
.

Let ε be the event in which no edge of C is ever selected. Since the events are independent, we have

Pr(ε) =

n−2∏
i=1

Pr
(
ε1|

i−1⋂
j=1

εj

)
≥
n−2∏
i=1

(
1− 2

n− i+ 1

)
=
(n− 2

n

)(n− 3

n− 1

)(n− 4

n− 2

)
. . .
(2

4

)(1

3

)
=

2

n(n− 1)
.

Therefore, the probability of failure is at most 1− 2
n(n−1) .

If we repeat the algorithm t times and pick the smallest cut, the probability of failure is at most
(

1− 2
n(n−1)

)t
≤(

1− 2
n2

)t
. Recall the well-known inequality that holds ∀c:(

1 +
c

x

)x
≤ ec. (6.1)

Using Eq. (6.1) and t = n2 log n, the probability of failure is at most e−2 logn = O(n−2).

Since we run the algorithm O(n2 log n) times and each run is O(n2), the total runtime for this algorithm is
O(n4 log n). While there does exist more efficient algorithms, one advantage of this one is that it is fairly
simple, and shows how randomization can help produce more efficient algorithms.

6.5 Coupon Collector Example

We illustrate previously introduced deviation bounds through an example. Consider the Coupon Collector’s
Problem. We have a deck of n cards. Each round, we randomly pick a card, note it’s value, and put it back in
the same place. We want to determine the expected number of rounds before each card is drawn at least once.
We frame the problem in terms of coupons instead of cards. Let X be the number of rounds before all coupon
types are collected. If Xi denotes the number of rounds until the next new coupon is collected when i coupons
have been collected already, then

E[X] =

n−1∑
i=0

E[Xi].

Let pi = n−i
n be the probability of drawing a new coupon when i coupons have already been seen. Since Xi

follows the geometric distribution1, the mean is given by

E[Xi] =
1

pi
=

n

n− i
. (6.2)

By Eq. (6.2), we have

E[X] =

n−1∑
i=0

n

n− i
= n

n∑
i=1

1

i
= nHn = n lnn+ Θ(n),

1The probability distribution of the number X of Bernoulli trials needed to get one success.

Lecture 6: Randomized Algrithms 6-7

where Hn denotes the n-th Harmonic number.

Using Markov’s inequality, we have that

Pr(X ≥ 2E[X]) = Pr(X ≥ 2nHn) ≤ 1

2
.

This means that the probability that we need twice as many rounds as expected to collect all coupons is at most
1
2 . A better bound can be achieved using Chebyshev’s inequality. Notice that since Xi is a geometric random

variable, we have that Var[Xi] = 1−pi
p2i
≤ 1

p2i
. Therefore, since Xi, ∀ 0 ≤ i ≤ n − 1, are independent random

variables, we have

Var[X] =

n−1∑
i=0

Var[Xi] ≤
n−1∑
i=0

(n

n− i

)2
= n2

n∑
i=1

1

i2
≤ n2π2

6
.

Therefore, using Chebyshev’s inequality, we have

Pr((X − E[X]) ≥ nHn) ≤ O(n2)

n2 ln2 n
= O

(1

ln2 n

)
.

6.6 Chernoff-Hoeffding’s Bound

Chernoff-Hoeffding’s bound is one of the strongest tail bounds for independent random variables, and perhaps
the most useful. We provide the bound as follows.

Theorem 3 Assume X1, . . . , Xn are independent random variables that take values in [0,1]. Then for X =∑n
i=1Xi and µ = E[X], we have the following:

1. For any 0 < δ: Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)(1+δ)

)µ
,

2. For any 0 ≤ δ ≤ 1: Pr(x ≥ (1 + δ)µ) ≤ e−µδ2/3,

3. For any r ≥ 6µ: Pr(X ≥ r) ≤ 2−r.

We provide a proof of statement 1 in Theorem 3, to provide further details regarding it’s derivation.

Proof. Suppose for ease that X1, . . . , Xn are Bernoulli random variables with Xi ∈ {0, 1} and E[Xi] = µ, ∀
1 ≤ i ≤ n. We can remove this assumption and prove the claim for any independent random variables that take
values in [0, 1].

Note for all t > 0,

Pr(X ≥ (1 + δ)µ) = Pr(tX ≥ t(1 + δ)µ)

= Pr(etX ≥ et(1+δ)µ).

Using Markov’s inequality, we have

Pr(etX ≥ et(1+δ)µ) ≤ E[etX]

et(1+δ)µ
=

E[
∏
i e
tXi]

et(1+δ)µ
=

∏
i E[etXi]

et(1+δ)µ
,

6-8 Lecture 6: Randomized Algrithms

where the first equality holds because the random variables are independent. Note that since we have Bernoulli
random variables,

etXi =

{
et, w.p. µi,

1, w.p. 1− µi.

Also note that 1 + x ≤ ex, ∀ x ≥ 0. Therefore, we have that

E[etXi] = etµi + (1− µi) = 1 + µi(e
t − 1) ≤ eµi(e

t−1).

Altogether, we have the following:

Pr(X ≥ (1 + δ)µ) ≤
∏
i(e

µi(e
t−1)

et(1+δ)µ

=
e(e

t−1)∑
i µi

et(1+δ)µ
=
e(e

t−1)µ

et(1+δ)µ

Letting t = ln(1 + δ), we obtain

Pr(X ≥ (1 + δ)µ) ≤
(eδ

(1 + δ)(1+δ)

)µ
,

as desired.

We have the following corollary, which implies that the Chernoff-Hoeffding’s bounds are double sided.

Corollary 4 For 0 < δ < 1:

Pr(|X − µ| ≥ δµ) ≤ 2e−µδ
2/3.

Corollary 4 implies that with high probability, X ∼ (1± δ)µ.

We finish this section with applying the deviation bounds presented in the lecture on an example.

Consider randomly flipping n unbiased coins. Let Xi = 1 if and only if coin i is a head, and X =
∑
iXi. Note

that µ = E[X] = n
2 and Var[X] = n

4 .

• Using Markov’s inequality, letting λ = µ, we have

Pr(X > λ+ µ) ≤ 1

2
.

• Using Chebyshev’s inequality, letting λ =
√
n, we have

Pr(X > µ+ λ) =
n
4

λ2
≤ 1

4
.

• Using Chernoff bounds, letting λ =
√

3n lnn, i.e., λ2

3µ = 2 lnn, we have

Pr(X ≥ µ+ λ) = Pr(X ≥ µ(1 +
λ

µ
)) ≤ e

−λ2
3µ = e−2 lnn =

1

n2
.

Therefore, using a Chernoff bound gives us a stronger tail bound than the simpler deviation bounds.

Lecture 6: Randomized Algrithms 6-9

6.7 References

https://en.wikipedia.org/wiki/Las_Vegas_algorithm

[CKL+23] Chen et al. ”Maximum Flow and Minimum-Cost Flow in Almost-Linear Time” (2023). URL:
https://arxiv.org/pdf/2203.00671

[KS93] David R. Karger and Clifford Stein. ”An Õ(n2) algorithm for minimum cuts”. In STOC, 1993.

