CMPUT 498/501: Advanced Algorithms

Fall 2025

Scribe: Kaining Yang

Lecture 19 (Nov 17, 2025): Semidefinite Programming: Max-Cut & Max-2SAT

Lecturer: Mohammad R. Salavatipour

19.1 Introduction to Semidefinite Programming

Semidefinite programming (SDP) is a powerful generalization of linear programming. While LP optimizes over the cone of non-negative vectors, SDP allows us to optimize over the much more expressive cone of positive semidefinite matrices.

 $Quadratic\ Programs\ (QP)$: A problem of optimizing a quadratic function of variables subject to a set of quadratic constraints.

19.1.1 Strict Quadratic Programming

Strict QP: If each of the constraints and the objective function consists only of degree zero or degree 2 monomials.

Definition 1 Let $x \in \mathbb{R}^{n \times n}$ be a symmetric real matrix. We say x is PSD (Positive Semidefinite) if $\forall a \in \mathbb{R}^n$: $a^T x a \geq 0$.

Theorem 1 If $x \in \mathbb{R}^{n \times n}$, then the following are equivalent:

- 1. $x \succeq 0$ (is PSD)
- 2. x has only non-negative eigenvalues
- 3. $\exists V \in \mathbb{R}^{m \times n}$, $m \leq n$ such that $x = V^T V$

4.
$$x = \sum_{i=1}^{n} \lambda_i \omega_i \cdot \omega_i^T$$
 for $\lambda_i \geq 0$, $\omega_i \in \mathbb{R}^n$ with $\omega_i^T \omega_i = 1$ and $\omega_i^T \omega_j = 0$ for $i \neq j$

Trace of $A \in \mathbb{R}^{n \times n}$: Tr(A) is the sum of diagonal entries.

Definition 2 (Frobenius Inner Product) For matrices $A, B \in \mathbb{R}^{n \times n}$:

$$A \bullet B = \operatorname{Tr}(A^T B) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij}$$

Let M_n be the cone of symmetric $\mathbb{R}^{n\times n}$ matrices. $X\succeq 0$ denotes X is PSD. Let $C,D_1,\ldots,D_k\in M_n$ and $d_1,\ldots,d_k\in\mathbb{R}$.

SDP Formulation:

$$\begin{aligned} \min / \max & & \sum_{ij} c_{ij} \cdot x_{ij} & \text{or} & & C \bullet X \\ \text{subject to} & & \sum_{i,j} d_{ij}^{(\ell)} \cdot x_{ij} = d_{\ell} & \text{or} & & D_{\ell} \bullet X = d_{\ell}, & \forall 1 \leq \ell \leq k \\ & & & X \succeq 0 \\ & & & X \in M_n \end{aligned}$$

If C, D_1, \ldots, D_k are diagonal, then this turns into an LP. SDP is a convex program. They can be solved in polynomial time with additive error ε (for any $\varepsilon > 0$). Polynomial in n and $\log(\frac{1}{\varepsilon})$.

19.2 Vector Programming

SDP is equivalent to vector programming. Let V_1, \ldots, V_n be n-dimensional vectors $V_i \in \mathbb{R}^n$.

$$\begin{aligned} & \min / \max & & \sum_{i,j} c_{ij} (\vec{v}_i \cdot \vec{v}_j) \\ & \text{subject to} & & \sum_{i,j} a_{ij,\ell} (\vec{v}_i \cdot \vec{v}_j) = b_\ell, & \forall 1 \leq \ell \leq k \\ & & \vec{v}_i \in \mathbb{R}^n \end{aligned}$$

The corresponding SDP is defined as follows: it has n^2 variables y_{ij} ; replace $\vec{v}_i \cdot \vec{v}_j$ by y_{ij} . Additionally require Y be PSD.

Lemma 1 The Vector Program and the corresponding SDP are equivalent.

Proof. We show any feasible solution of V corresponds to a feasible solution of SDP with the same value.

Let $W = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix}$ where $\vec{x}_1, \dots, \vec{x}_n$ is a solution to V. Then $X = W^T W$ is feasible to SDP with the same value (other direction is similar).

19.3 Max-Cut

Input: Undirected graph G(V, E), edge weights $w : E \to \mathbb{R}^+$.

Goal: Find a subset $S \subseteq V$ that maximizes $w(\delta(S)) = \sum_{e \in \delta(S)} w_e$.

The integrality gap for all known LP's is 2. Random partition gives a $\frac{1}{2}$ -approximation for Max-Cut. We can formulate Max-Cut exactly using variables $y_i \in \{-1, 1\}$:

$$\max \frac{1}{2} \sum_{1 \le i < j \le n} w_{ij} (1 - y_i y_j)$$
 subject to $y_i^2 = 1$
$$y_i \in \mathbb{Z}$$
 (IP)

We relax this to a Vector Program (VP) by replacing $y_i y_j$ with $\vec{v}_i \cdot \vec{v}_j$:

$$(VP) \quad \max \quad \frac{1}{2} \sum_{i < j} w_{ij} (1 - \vec{v}_i \cdot \vec{v}_j)$$
s.t.
$$\vec{v}_i \cdot \vec{v}_i = 1$$

$$\vec{v}_i \in \mathbb{R}^n$$

Since $\vec{v}_i \cdot \vec{v}_i = 1$, all vectors lie on the *n*-dimensional sphere S_n .

Example 1 (Integrality Gap on C_5) Consider a 5-cycle (C_5) with edge weights w(e) = 1.

- OPT: The maximum cut removes all but one edge, so OPT = 4.
- **VP Solution:** The optimal vector solution arranges the vectors in \mathbb{R}^2 such that the angle between adjacent vertices is $\theta = 4\pi/5$.

$$Z_{VP} = 5 \cdot \left(\frac{1 - \cos(4\pi/5)}{2}\right) = \frac{25 + 5\sqrt{5}}{8} \approx 4.52$$

Thus, the integrality gap is $\frac{\mathrm{OPT}}{Z_{VP}} \approx 0.884$. The larger the angle θ_{ij} (closer to π), the larger the contribution to the cut.

19.3.1 Max-Cut SDP Rounding

Algorithm 1 Max-Cut SDP Rounding

- 1: Solve the VP and get vectors \vec{v}
- 2: Choose a random vector r on unit sphere S_n
- 3: Let $S = \{i \mid \vec{v}_i \cdot r \ge 0\}$
- 4: Return S

Vector r is normal to a hyperplane. All vectors on the same side as r will be selected (to S).

$$\vec{v}_i \cdot \vec{v}_j = \cos(\theta_{ij}) |\vec{v}_i| |\vec{v}_j|$$

 $\vec{v}_i \cdot r$ and $\vec{v}_i \cdot r$ have different signs.

Lemma 2 $\Pr[v_i \text{ and } v_j \text{ are separated by } r] = \frac{\theta_{ij}}{\pi}$

Proof. Consider the plane defined by \vec{v}_i, \vec{v}_j and project r onto this plane. \vec{v}_i and \vec{v}_j are separated iff r lies between the arcs of θ_{ij} :

$$\begin{split} r &= r' + r'' \quad \text{so } \vec{v}_i \cdot r = \vec{v}_i \cdot (r' + r'') \\ &= \vec{v}_i \cdot r' \quad \text{since } r'' \text{ is orthogonal} \\ \vec{v}_i \cdot r &= \vec{v}_i \cdot r' \end{split}$$

Let
$$X_{ij} = \begin{cases} 1 & \text{if } e = ij \text{ is across the cut} \\ 0 & \text{otherwise} \end{cases}$$
. Then $W = \sum_{ij} w_{ij} \cdot X_{ij}$.

$$\mathbb{E}[W] = \sum_{ij} w_{ij} \cdot \Pr[v_i \text{ and } v_j \text{ are sep}] = \sum_{ij} w_{ij} \cdot \frac{\theta_{ij}}{\pi}$$

Let
$$\alpha_{GW} = \frac{2}{\pi} \min_{\theta \in (0,\pi]} \frac{\theta}{1 - \cos \theta}$$
. For any θ , $\frac{\theta}{\pi} \ge \alpha \left(\frac{1 - \cos \theta}{2}\right)$.

$$\Rightarrow \mathbb{E}[W] \ge \alpha \sum_{ij} \frac{1}{2} w_{ij} (1 - \cos \theta_{ij}) = \alpha \cdot Z_{\text{SDP}}$$

Lemma 3 $\alpha_{GW} \geq 0.8785$

Theorem 2 (Khot et al.) Assuming UGC, there is no $(\alpha_{GW} - \varepsilon)$ -approximation for Max-Cut for any $\varepsilon > 0$.

19.4 Max-2SAT using SDP

We saw that LP gives a $\frac{3}{4}$ -approximation for Max-2SAT and the gap was $\frac{3}{4}$ (tight). We show how we can do better using SDP.

$$y_i = \pm 1$$
 for x_i
 $y_0 = y_i$ iff x_i is True

Value of a clause C: v(C) = 1 iff C is satisfied.

$$v(x_i) = \frac{1 + y_i y_0}{2}$$

$$v(\overline{x}_i) = \frac{1 - y_i y_0}{2}$$

$$v(x_i \lor x_j) = 1 - v(\overline{x}_i)v(\overline{x}_j) = 1 - \frac{1 - y_i y_0}{2} \cdot \frac{1 - y_j y_0}{2}$$

$$= \frac{1}{4} \left(3 + y_i y_0 + y_j y_0 - y_i y_j y_0^2 \right)$$

$$= \frac{1 + y_i y_0}{4} + \frac{1 + y_j y_0}{4} + \frac{1 - y_i y_j}{4} \quad \text{(since } y_0^2 = 1\text{)}$$

So each clause is a linear combination of $1 + y_i y_j$ and $1 - y_i y_j$. The objective is to maximize the weighted sum $\sum w_C v(C)$:

$$\max \sum [a_{ij}(1+y_iy_j) + b_{ij}(1-y_iy_j)]$$

subject to:

$$y_i^2 = 1$$
$$y_i = \pm 1$$

$$\max \sum a_{ij}(1 + \vec{v}_i \cdot \vec{v}_j) + b_{ij}(1 - \vec{v}_i \cdot \vec{v}_j)$$

subject to:

$$\vec{v}_i \cdot \vec{v}_i = 1$$
$$\vec{v}_i \in \mathbb{R}^{n+1}$$

Like Max-Cut: take a random $r \in S_{n+1}$, round each y_i to ± 1 iff $r \cdot \vec{v_i} \ge 0$.

Lemma 4 $\mathbb{E}[W] \ge \alpha \cdot Z_{SDP}$

$$\mathbb{E}[W] = 2\sum \left[a_{ij} \cdot \Pr[y_i = y_j] + b_{ij} \cdot \Pr[y_i \neq y_j]\right]$$

where $\vec{v}_i \cdot \vec{v}_j = \theta_{ij}$:

$$\Pr[y_i \neq y_j] = \frac{\theta_{ij}}{\pi} \ge \frac{\alpha}{2} (1 - \cos \theta_{ij})$$
$$\Pr[y_i = y_j] = 1 - \frac{\theta_{ij}}{\pi} \ge \frac{\alpha}{2} (1 + \cos \theta_{ij})$$

$$\Rightarrow \mathbb{E}[W] \ge \alpha \sum a_{ij} (1 + \cos \theta_{ij}) + b_{ij} (1 - \cos \theta_{ij}) = \alpha \cdot Z_{\text{SDP}}$$

Theorem 3 (LLZ/JNZ) Max-2SAT has an SDP rounding algorithm with ratio 0.94016 and this is best possible under UGC.

19.5 General CSP

General CSP with range of values $\{1, \ldots, k\}$:

$$(x_1, x_5, x_6) \in \left\{ \begin{pmatrix} 2\\1\\6 \end{pmatrix}, \begin{pmatrix} 5\\5\\3 \end{pmatrix}, \begin{pmatrix} 4\\8\\11 \end{pmatrix} \right\}$$