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Lecture 12 (Oct 15, 2025): Integer/Linear Programming, Duality

Lecturer: Mohammad R. Salavatipour Scribe: Lyndon Hallett, Haoxin Sang

12.1 Linear Programming

An LP is the problem of optimizing a linear objective function over n variables x1, xs, ..., x, subject to linear

equality or inequality constraints. An example of a LP is as follows:
minimize: 2x1 — dxo + 3x3
subject to: r1 + 229 > 8
—3x1 + 4x9 4+ 813 > 16
—I9 + 12%3 Z 24

A general form of the above LP is typically expressed by the following:

n
minimize: g Cjx;
Jj=1

n
subject to: Zaijxj >b; 1<i<m

j=1
z; >0 1<5<n
Its vector form is the following;:
minimize: cTx
subject to: Ax >b

x>0

Definition 1 If x satisfies the constraints, then it is a feasible solution

Some further notes about LPs:

o A LP is feasible if it has a feasible solution.

e A LP is unbounded if for any a € R there is a feasible solution x such that ¢Tx > a.

e The objective can be maximization, that is:

maximize: cTx
subject to: Ax <b
x>0
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e Many problems can be formulated as a LP.
e LP has many applications in designing both exact and approximate algorithms.

Example: A farmer has L hectares of land and can grow three different products. It has a total of F' kilograms
of fertilizer and P kilograms of pesticide. The selling prices of the products are Si, S, S3 respectively. The
amount of fertilizer needed per hectare is f1, fa, f3, and likewise is py, po, p3 for pesticide. We can formulate the
following LP for this problem:

maximize: S1x1 + Soxo + S3x3
subject to: r1+xo+a3 <L
fiw1 + foxe + faws < F
p171 + p2x2 + p3zz < P
T1,x2,23 >0

12.2 Equivalent Forms

We can translate between min / max:

maxcTx < min —c¢Tx

Equalities can be re-expressed as inequalities:

T

alx =b;, < alx <b;

aiTx > bz

Using slack variables to express inequalities as equality:

alx<b <alx+s;=b >0

We have both canonical and standard form LPs, respectively:

minimize: cTx minimize: cTx
subject to: Ax <b subject to: Ax=Db
x>0 x>0

We consider the following example to show a geometric point of view.
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X3

0,0.3) (1,0,3)

(2,0,2)

maximize: 2r1 + x3
subject to: r1 <2
X3 S 3 x|
3.’£2 + 23 S 6 (2,0,0)

T +x0+23 <4

x1,%2,73 > 0

Figure 12.1: (2,0,2) is an optimal feasible solution.

Definition 2 A hyperplane in R™ is a set of points {x € R" : a121 + agx2 + - -+ + apx, = b} for some given
a;’s and b (with not all a;’s = 0).

A hyperplane defines two half spaces ax < b and ax > b.

A\

Figure 12.2: The two half spaces defined by the hyperplane above.

Definition 3 A polyhedron is the convex body defined by the intersection of a finite number of half spaces.

Definition 4 A polytope is a bounded polyhedron.
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Figure 12.4: The shaded region is a polytope.

Figure 12.3: The shaded region is a polyhe- Note the green line is a face of the polytope.

dron.

Definition 5 Consider a polytope P C R™ and a half-space S define by a hyperplane H. If PNS is non-empty,
then the intersection of P and H is a face of P (equivalently, a face is the set of points satisfying a valid
inequality of P with equality).

A facet is a face of dimension n — 1. A vertex a face of dimension 0, and a line/edge is a face of dimension 1.
Note that a hyperplane defining a facet corresponds to a defining half-space of P but the converse may not be
true.

Fact: Any interior point of P can be written as a convex combination of its vertices. For points z1,xs and
A €[0,1], z = Ax1 + (1 — N)as is called a convex combination of x1, xs.

We have the following fact: If a LP is feasible, there is always an optimal “corner” solution called a basic feasible
solution (BFS).

Definition 6 A a point x € R™ is called an extreme point of a polyhedron P if there do not exist two other
points x1,xe inside P and X € [0,1] such that z* = Az + (1 — N)za.

Definition 7 Given a polyhedron P, a point x* inside P (i.e. a feasible solution) is called a basic feasible
solution if there are n linearly independent constraints of P which x* satisfies with equality.

For a bfs z*, there is a set I of size n where the constraints a; - * = b; for ¢ € I are satisfied and for indices
j & I constraints a; - * < b; hold. A bfs correspond to extrem points of the polyhedron (and are also called
vertex solutions).

Thus, a basic solution can be found by: find a set B of n linearly independent rows of A and change the
inequality to equality; solve the resulting equations to find x

BFS’s are very important. If a LP is feasible, it has a BFS (they cannot be written as a convex combination of
other feasible solutions).
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Lemma 1 Let x be a BFS to Ax = b, x > 0. Then there is a unique c such that x is the unique optimal
feasible solution to

minimize: cTx
subject to: Ax=Db
x>0

Theorem: Let x* be a vertex of P = {x € R"” | Ax < b}. Then there exists I C {1,...,n} such that x* is the
unique solution to
Arx =by, Aj linearly independent.

Proof: Exercise.

Hence, vertices of a polytope correspond to basic feasible solutions of an LP. Each BFS is defined by a set of n
linearly independent equations that hold with equality.

Solving LPs

Simplex: The method used in practice moves from one vertex to another (pivoting). Worst-case time is
exponential, but it works well in practice.

Ellipsoid: The first polynomial-time LP solver [K79]. Not practical, but it had big consequences in combina-
torial optimization and designing other algorithms.

LP Feasibility vs. Optimum Solutions

The main problem is to find one feasible solution, as optimization can be reduced to feasibility by adding the
objective as a constraint and performing binary search on a:

T

maximize: c' X
subject to: Ax >b
x>0

can be reduced to

Ax > Db
chga
x > 0.

Important Feature of Ellipsoid: Separation Oracle

Given a proposed solution x to LP, the oracle returns “Yes” (feasible) or “No” along with a constraint that is
violated by x.
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The Ellipsoid algorithm finds a feasible solution by making polynomially many calls to a separation oracle.

Why is this powerful? As long as we have a polynomial time separation oracle, we can solve the LP in
polynomial time, even if the number of constraints (potentially exponentially) large.

Duality

Consider the following LP:
min 10z + 6x2 + 423 (12.1)
s.t. 221 + 20 — 13 > 2 (12.2)
T1+ T2+ 13 >3 ( )
1,22, 23 > 0. ( )
Question: is the optimal value Z* < 507
To answer this, we can check whether there exists a feasible solution with value < 50, say x = (1,1, 1).
Question: Is Z7* > 107
To answer, we need to find lower bounds.
Compare Eq. (12.1) and Eq. (12.3): Since coefficients are nonnegative, we can say
Z* > 4(x + a9 + x3) > 12

In fact, we can take any (non-negative) linear combination of Eq. (12.2) and Eq. (12.3) with weights such that
the coefficients in the combination are less than or equal to those in Eq. (12.1). That is, consider
min 1021 + 629 + 423
s.t. 2z + 29 — 3 > 2, +— Multiply y; > 0
T+ x2 + a3 > 3, <— Multiply y2 > 0
L1,T2,T3 2 Oa
and we have Z* is greater than or equal to
max 2y + 3y2
s.t. 2y1 + Y2 < 107
y1 +y2 <6,
- + Y2 S 47
y1,y2 > 0.

Example:

Primal Dual

min 3x1 + x2 + 223 max  30y; + 24y + 36ys
subject to: subject to:

1 + 22 + 323 > 30 Y1 +2y2 +4y3 <3

211 + 2x9 + Hw3 > 24 y1+2y2 +ys3 <1

4y + 9 + 223 > 36 3y1 + dy2 +2y3 < 2
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In general, we have

Primal Dual
min  c¢’x max by
subject to: subject to:

Ax>b ATy <c

x>0 y>0

Weak Duality

If x and y are any feasible solutions to the primal (P) and dual (D) respectively, then
c'x > bly.
Proof: From Ax > b and ATy < ¢ with x,y > 0, we have
bly <xTATy = yT'Ax < 'x.

Corollary: If the dual (D) is unbounded (i.e., the objective can go to 4+00), then the primal (P) is infeasible.

Likewise, if the primal is unbounded (objective — —o0), then the dual is infeasible.

Strong Duality

The primal (P) has a finite feasible solution, if and only if the dual (D) also has a finite feasible solution. Let
x* and y* be the optimum of P and D, respectively, and then we have

cI'x* =bly*.

Theorem(Complementary Slackness Theorem): Let x and y be feasible solutions to the primal and dual
respectively. Then x and y are optimal if and only if the following conditions hold:

e Primal Complementary Slackness:

e Dual Complementary Slackness:

yi (Ax); —b;) =0 V1<i<m.

That is, for each constraint or variable, either the inequality is tight or the corresponding multiplier is zero.

p D | unbounded | infeasible feasible
unbounded impossible | impossible | possible impossible
infeasible possible possible impossible
feasible impossible | impossible | possible & equal
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