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12.1 Linear Programming

An LP is the problem of optimizing a linear objective function over n variables x1, x2, . . . , xn subject to linear
equality or inequality constraints. An example of a LP is as follows:

minimize: 2x1 − 5x2 + 3x3

subject to: x1 + 2x2 ≥ 8

−3x1 + 4x2 + 8x3 ≥ 16

−x2 + 12x3 ≥ 24

A general form of the above LP is typically expressed by the following:

minimize:

n∑
j=1

cjxj

subject to:

n∑
j=1

aijxj ≥ bi 1 ≤ i ≤ m

xj ≥ 0 1 ≤ j ≤ n

Its vector form is the following:

minimize: cᵀx

subject to: Ax ≥ b

x ≥ 0

Definition 1 If x satisfies the constraints, then it is a feasible solution

Some further notes about LPs:

• A LP is feasible if it has a feasible solution.

• A LP is unbounded if for any α ∈ R there is a feasible solution x such that cᵀx ≥ α.

• The objective can be maximization, that is:

maximize: cᵀx

subject to: Ax ≤ b

x ≥ 0
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• Many problems can be formulated as a LP.

• LP has many applications in designing both exact and approximate algorithms.

Example: A farmer has L hectares of land and can grow three different products. It has a total of F kilograms
of fertilizer and P kilograms of pesticide. The selling prices of the products are S1, S2, S3 respectively. The
amount of fertilizer needed per hectare is f1, f2, f3, and likewise is p1, p2, p3 for pesticide. We can formulate the
following LP for this problem:

maximize: S1x1 + S2x2 + S3x3

subject to: x1 + x2 + x3 ≤ L
f1x1 + f2x2 + f3x3 ≤ F
p1x1 + p2x2 + p3x3 ≤ P

x1, x2, x3 ≥ 0

12.2 Equivalent Forms

• We can translate between min / max:

max cᵀx↔ min−cᵀx

• Equalities can be re-expressed as inequalities:

aᵀ
i x = bi ↔ aᵀ

i x ≤ bi
aᵀ
i x ≥ bi

• Using slack variables to express inequalities as equality:

aᵀ
i x ≤ bi ↔ aᵀi x + si = bi si ≥ 0

• We have both canonical and standard form LPs, respectively:

minimize: cᵀx

subject to: Ax ≤ b

x ≥ 0

minimize: cᵀx

subject to: Ax = b

x ≥ 0

We consider the following example to show a geometric point of view.
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maximize: 2x1 + x3

subject to: x1 ≤ 2

x3 ≤ 3

3x2 + x3 ≤ 6

x1 + x2 + x3 ≤ 4

x1, x2, x3 ≥ 0

Figure 12.1: (2,0,2) is an optimal feasible solution.

Definition 2 A hyperplane in Rn is a set of points {x ∈ Rn : a1x1 + a2x2 + · · · + anxn = b} for some given
ai’s and b (with not all ai’s = 0).

A hyperplane defines two half spaces ax ≤ b and ax ≥ b.

Figure 12.2: The two half spaces defined by the hyperplane above.

Definition 3 A polyhedron is the convex body defined by the intersection of a finite number of half spaces.

Definition 4 A polytope is a bounded polyhedron.
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Figure 12.3: The shaded region is a polyhe-
dron.

Figure 12.4: The shaded region is a polytope.
Note the green line is a face of the polytope.

Definition 5 Consider a polytope P ⊆ Rn and a half-space S define by a hyperplane H. If P ∩S is non-empty,
then the intersection of P and H is a face of P (equivalently, a face is the set of points satisfying a valid
inequality of P with equality).

A facet is a face of dimension n − 1. A vertex a face of dimension 0, and a line/edge is a face of dimension 1.
Note that a hyperplane defining a facet corresponds to a defining half-space of P but the converse may not be
true.

Fact: Any interior point of P can be written as a convex combination of its vertices. For points x1, x2 and
λ ∈ [0, 1], x = λx1 + (1− λ)x2 is called a convex combination of x1, x2.

We have the following fact: If a LP is feasible, there is always an optimal “corner” solution called a basic feasible
solution (BFS).

Definition 6 A a point x ∈ Rn is called an extreme point of a polyhedron P if there do not exist two other
points x1, x2 inside P and λ ∈ [0, 1] such that x∗ = λx1 + (1− λ)x2.

Definition 7 Given a polyhedron P , a point x∗ inside P (i.e. a feasible solution) is called a basic feasible
solution if there are n linearly independent constraints of P which x∗ satisfies with equality.

For a bfs x∗, there is a set I of size n where the constraints ai · x∗ = bi for i ∈ I are satisfied and for indices
j 6∈ I constraints aj · x∗ ≤ bj hold. A bfs correspond to extrem points of the polyhedron (and are also called
vertex solutions).

Thus, a basic solution can be found by: find a set B of n linearly independent rows of A and change the
inequality to equality; solve the resulting equations to find x

BFS’s are very important. If a LP is feasible, it has a BFS (they cannot be written as a convex combination of
other feasible solutions).
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Lemma 1 Let x be a BFS to Ax = b, x ≥ 0. Then there is a unique c such that x is the unique optimal
feasible solution to

minimize: cᵀx

subject to: Ax = b

x ≥ 0

Theorem: Let x∗ be a vertex of P = {x ∈ Rn | Ax ≤ b}. Then there exists I ⊆ {1, . . . , n} such that x∗ is the
unique solution to

AIx = bI , AI linearly independent.

Proof: Exercise.

Hence, vertices of a polytope correspond to basic feasible solutions of an LP. Each BFS is defined by a set of n
linearly independent equations that hold with equality.

Solving LPs

Simplex: The method used in practice moves from one vertex to another (pivoting). Worst-case time is
exponential, but it works well in practice.

Ellipsoid: The first polynomial-time LP solver [K79]. Not practical, but it had big consequences in combina-
torial optimization and designing other algorithms.

LP Feasibility vs. Optimum Solutions

The main problem is to find one feasible solution, as optimization can be reduced to feasibility by adding the
objective as a constraint and performing binary search on α:

maximize: cTx

subject to: Ax ≥ b

x ≥ 0

can be reduced to

Ax ≥ b

cTx ≤ α
x ≥ 0.

Important Feature of Ellipsoid: Separation Oracle

Given a proposed solution x to LP, the oracle returns “Yes” (feasible) or “No” along with a constraint that is
violated by x.
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The Ellipsoid algorithm finds a feasible solution by making polynomially many calls to a separation oracle.

Why is this powerful? As long as we have a polynomial time separation oracle, we can solve the LP in
polynomial time, even if the number of constraints (potentially exponentially) large.

Duality

Consider the following LP:

min 10x1 + 6x2 + 4x3 (12.1)

s.t. 2x1 + x2 − x3 ≥ 2 (12.2)

x1 + x2 + x3 ≥ 3 (12.3)

x1, x2, x3 ≥ 0. (12.4)

Question: is the optimal value Z∗ < 50?

To answer this, we can check whether there exists a feasible solution with value ≤ 50, say x = (1, 1, 1).

Question: Is Z∗ > 10?

To answer, we need to find lower bounds.

Compare Eq. (12.1) and Eq. (12.3): Since coefficients are nonnegative, we can say

Z∗ ≥ 4 (x1 + x2 + x3) ≥ 12.

In fact, we can take any (non-negative) linear combination of Eq. (12.2) and Eq. (12.3) with weights such that
the coefficients in the combination are less than or equal to those in Eq. (12.1). That is, consider

min 10x1 + 6x2 + 4x3

s.t. 2x1 + x2 − x3 ≥ 2, ←− Multiply y1 ≥ 0

x1 + x2 + x3 ≥ 3, ←− Multiply y2 ≥ 0

x1, x2, x3 ≥ 0,

and we have Z∗ is greater than or equal to

max 2y1 + 3y2

s.t. 2y1 + y2 ≤ 10,

y1 + y2 ≤ 6,

− y1 + y2 ≤ 4,

y1, y2 ≥ 0.

Example:

Primal Dual

min 3x1 + x2 + 2x3 max 30y1 + 24y2 + 36y3

subject to: subject to:

x1 + x2 + 3x3 ≥ 30 y1 + 2y2 + 4y3 ≤ 3

2x1 + 2x2 + 5x3 ≥ 24 y1 + 2y2 + y3 ≤ 1

4x1 + x2 + 2x3 ≥ 36 3y1 + 5y2 + 2y3 ≤ 2
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In general, we have

Primal Dual

min cTx max bTy

subject to: subject to:

Ax ≥ b ATy ≤ c

x ≥ 0 y ≥ 0

Weak Duality

If x and y are any feasible solutions to the primal (P) and dual (D) respectively, then

cTx ≥ bTy.

Proof: From Ax ≥ b and ATy ≤ c with x,y ≥ 0, we have

bTy ≤ xTATy = yTAx ≤ cTx.

Corollary: If the dual (D) is unbounded (i.e., the objective can go to +∞), then the primal (P) is infeasible.

Likewise, if the primal is unbounded (objective → −∞), then the dual is infeasible.

Strong Duality

The primal (P) has a finite feasible solution, if and only if the dual (D) also has a finite feasible solution. Let
x∗ and y∗ be the optimum of P and D, respectively, and then we have

cTx∗ = bTy∗.

Theorem(Complementary Slackness Theorem): Let x and y be feasible solutions to the primal and dual
respectively. Then x and y are optimal if and only if the following conditions hold:

• Primal Complementary Slackness:

xj
(
cj − (ATy)j

)
= 0 ∀1 ≤ j ≤ n,

• Dual Complementary Slackness:

yi ((Ax)i − bi) = 0 ∀1 ≤ i ≤ m.

That is, for each constraint or variable, either the inequality is tight or the corresponding multiplier is zero.

hhhhhhhhhhhh
P D unbounded infeasible feasible

unbounded impossible impossible possible impossible

infeasible possible possible impossible

feasible impossible impossible possible & equal
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