
CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 11 (Oct 8, 2025): Algebraic Techniques

Lecturer: Mohammad R. Salavatipour Scribe: Priyanshu Thakkar, Bhavya Thakkar

11.1 Finger printing

Imagine a company maintaining multiple copies of a huge data set. From time to time, they would like to check
whether these copies are identical or not. We can think of a data set as a binary string of length n. So the basic
idea is simple : to compare two items x,y from a huge universe U .

As an example consider the following setting where Alice Alice has a binary string a1, a2, . . . , an and Bob has a
binary string b1, b2, . . . , bn. They would like to check whether their strings are equal with as few communications
as possible.

Deterministic Algorithm: An obvious algorithm is for Alice to send all her bits to Bob, who can then check
and tell Alice whether their strings are equal.

However, this approach requires n bits of communication (|x| = |y| = n). As you might imagine, there are no
better ways to do it, and it can be proved that there are no deterministic algorithms that can do better, using
techniques developed in communication complexity.

Randomized Algorithm: There is a randomized algorithm for this problem that uses only O(log n) bits of
communication.

We will be working over some unspecified field F. Part of the reason we do not explicitly specify the underlying
field is that typically the randomization will involve uniform sampling from a finite subset of the field; in such
cases, we do not have to worry about whether the field is finite or not. It may be helpful to think of F as the
field Q of the rational numbers; when we restrict ourselves to finite fields, it may be useful to assume that F is
Zp = {0, 1, 2, . . . , p− 1}, the field of integers modulo some prime number p.

Suppose x = a1, a2, . . . , an and y = b1, b2, . . . , bn. We consider the polynomials

A(x) =

n∑
i=1

aix
i and B(x) =

n∑
i=1

bix
i.

Algorithm 1 Consistency Check between Alice and Bob

Alice and Bob agree on a sufficiently large field F (e.g., modular arithmetic over a large prime p)
Alice picks a random element r ∈ F, evaluates A(r), and sends r and A(r) to Bob
Bob computes B(r)
if A(r) = B(r) then return “consistent”
else return “inconsistent”

Analysis : If the two strings are equal, then A(x) = B(x) and the algorithm will always output “consistent”.
Therefore, whenever it returns “inconsistent”, it is guaranteed to be correct.

11-1

11-2 Lecture 11: Algebraic Techniques

The only possibility for error occurs when the strings are different but the algorithm still outputs “consistent”.
This happens if the randomly chosen r happens to be a root of (A−B)(x) = 0.

Since A and B are polynomials of degree at most n, (A−B) also has degree at most n and thus has at most n
roots. Picking r uniformly at random from F, the probability that r is a root is at most n/p = ε.

By choosing a large enough prime, say p = n2, the algorithm achieves communication complexity of 2 log n bits
and an error probability of at most 1/n.

11.2 Finger printing : Frievald’s technique

Consider the following problem: given matrices A, B, and C, we want an efficient way to verify if AB = C. The
straightforward brute-force check requires O(n3) time, dominated by the multiplication of A and B (though
advanced algorithms can reduce this to O(n2.376...)).

We aim for a faster and simpler method to check AB = C, which is especially useful as a verification step after
performing complex matrix multiplications.

Consider a random vector r ∈ {0, 1}n. Instead of computing the full product AB, we can check if ABr = Cr
as follows:

• Compute x = Br in O(n2) time.

• Compute y = Ax in O(n2) time.

• Compute z = Cr in O(n2) time.

If AB = C there is no problem with this procedure, but what if AB is not equal to C but ABr = Cr? To
rephrase, let D = AB − C. What if Dr = 0 but D 6= 0?

If D is non-zero, there must exist a non-zero row vector ~d. Without loss of generality, assume ~d is the first row
of D that is not zero.

Then, for Dr = 0 we have:

n∑
i=1

diri = 0 =⇒ r1 =
−
∑n
i=2 diri
d1

.

Assume that all ri for i ≥ 2 are chosen before r1. Then there is a unique value v ∈ F for r1, and the probability
that r1 takes that value is at most 1/2.

We can repeat this process k times to reduce the error probability to at most 1/2k.

11.3 Polynomial Identity Testing

Freivalds’ technique is fairly general and can be applied to the verification of several different kinds of identities.
In this section, we see that it also applies to the verification of identities involving polynomials.

Given polynomials P , Q, and R over F, we want to check if P (x)Q(x) = R(x), where P and Q have degree at
most n, and R has degree at most 2n. Using FFTs, we can multiply and evaluate R(x) in O(n log n) time.

Lecture 11: Algebraic Techniques 11-3

A faster and randomized test :

• Let S ⊆ F, and pick r ∈ S uniformly at random.

• Compute P (r)Q(r)−R(r).

• If the result is non-zero, we know that the original equality does not hold.

• Otherwise, we conclude that the equality holds.

What is the probability of error?

If D(x) = P (x)Q(x)−R(x) is not identically zero but the value r that we chose is one of its roots, an error can
occur.

Since the degree of R(x) is at most 2n, the degree of D(x) is ≤ 2n, and thus it has at most 2n roots. Therefore,
the probability of error is ≤ 2n/|S|.

General Setting :

Now, we consider a generalization of the argument to multivariate polynomials composed of n variables. The
degree of a term is defined as the sum of the degrees of the included variables. For example, deg(x2yz3) = 6.

We are given a multivariate polynomial P (x1, . . . , xn) and the objective is to determine if P (x1, . . . , xn) = 0,
i.e., whether it is equal to the zero polynomial.

If the polynomial is given explicitly (e.g., P (x1, x2, x3) = x1x
2
2x

3
3 + 4x61x3 +x2x

2
3), then this problem is straight-

forward. However, the polynomial can also be given compactly. For e.g.,

P (x1, x2, x3) = (x1 − x23)(x33 + x42) · · · (x1 + x2x3)

or

P (x1, x2, x3) = det

x1 x3 x2 + x24
0 x2 − x3 1
x32 x1 x4x2x3

 .

, and the problem becomes difficult.

In some cases, we may only have access to a polynomial through a black box that can evaluate it at a given
point.

Currently, there is no known deterministic polynomial-time algorithm for checking the identity of multivariate
polynomials.

Theorem (Schwartz and Zippel) : Let Q(x1, . . . , xn) be a multivariate polynomial of total degree d. Let
S ⊂ F , and let r1, r2, . . . , rn be selected uniformly at random from S. Then

P
[
Q(r1, . . . , rn) = 0 | Q(x1, . . . , xn) 6≡ 0

]
≤ d

|S|
.

Proof : We prove by induction on n. Base Case: n = 1, was done in the previous subsection.

Consider Q and pick one variable, say x1, that affects Q and factor it:

11-4 Lecture 11: Algebraic Techniques

Q =
∑
i≤k

xi1Qi(x2, . . . , xn)

where k is the largest exponent of x1. We have Qk(x2, . . . , xn) 6= 0 by the choice of x1 and the total degree of Qk
is at most d− k. First assume that Qk(r2, . . . , rn) 6= 0. Let q(x1) = Q(x1, r2, . . . , rn) =

∑k
i=0 x

i
1Qi(r2, . . . , rn).

Since q(x1) is a single-variable polynomial, the probability that q(x1) equals zero is at most k
|S| . Also, by

induction hypothesis and since total degree of Qk is at most d− k:

P[Qk(r2, . . . , rn) = 0] ≤ d− k
|S|

.

Thus:

P[Qk(r2, . . . , rn) = 0] ≤ d− k
|S|

and P[Q(r1, . . . , rn) = 0 | Qk(r1, . . . , rn) 6= 0] ≤ k

|S|
.

For any two events E1 and E2:

P[E1] = P[E1 ∩ E2] + P[E1 ∩ E2] ≤ P[E1 | E2] + P[E2].

Thus:

P[Q(r1, . . . , rn) = 0] ≤ d− k
|S|

+
k

|S|
=

d

|S|
,

as claimed.

11.4 Perfect Matchings

Here, we discuss fast randomized methods for determining whether a bipartite graph contains a perfect matching
and for constructing one if it exists. These methods make use of polynomial identity testing, as introduced earlier.

A bipartite graph G(U ∪V,E) is a graph whose vertices are divided into two separate sets U and V , with every
edge connecting a vertex from U to a vertex from V . When |U | = |V | = n, a perfect matching M ⊆ E is a
collection of n edges such that each vertex is incident to exactly one edge in M , i.e., the subgraph formed by
M is 1-regular.

Definition 1 A Tutte matrix of a bipartite graph G(U ∪ V,E) is an n× n matrix M defined as

Mij =

{
Xij if (ui, vj) ∈ E,
0 otherwise.

The determinant of this Tutte matrix provides a way to check if the graph contains a perfect matching.

Theorem 1 (Edmond) If det(M) 6= 0, then the bipartite graph G has a perfect matching.

Lecture 11: Algebraic Techniques 11-5

Proof. By the definition of the determinant,

det(M) =
∑
π∈Pn

(−1)sign(π)
n∏
i=1

Mi,π(i),

where Pn is the set of all permutations of {1, . . . , n}. There is a natural one-to-one correspondence between
perfect matchings in G and permutations of {1, . . . , n} given by

{(v1, uπ(1)), . . . , (vn, uπ(n))}.

Hence, every term in the determinant expansion is nonzero if and only if it corresponds to a perfect matching
of G. Since each product in the sum is unique, no two terms cancel out.

Randomized Matching Algorithm: This provides a simple method to check for the existence of a perfect
matching in G.

Using Edmonds’ theorem and the Schwartz-Zippel lemma, we can efficiently test for the existence of a perfect
matching by evaluating whether det(M) = 0:

• If G has no perfect matching, then P[accept] = 0.

• If G has a perfect matching, then P[accept] ≥ 1
2 .

Time complexity: The most computationally intensive step of this algorithm is computing the determinant
of the Tutte matrix. When the matrix entries are actual values from a field, the determinant can be computed
using Gaussian elimination in O(n3) time. There also exist fast matrix multiplication algorithms with exponent
ω ≈ 2.371, which can theoretically improve the runtime.

This approach was the fastest known algorithm for finding perfect matchings in dense bipartite graphs (as of
2022, faster algorithms have been developed).

How to find a perfect matching?

Given an algorithm to check for the existence of a perfect matching, we can construct a method to actually find
one:

Algorithm 2 Finding a Perfect Matching

Pick an edge uivj ∈ E and denote it as e
if G− e has a perfect matching then

Include edge e in the matching
Recurse on G− e

else
Discard edge e
Recurse on G− e

end if

11.5 Parallel Algorithm and Isolation Lemma

Another benefit of the algebraic approach to perfect matchings is that many of its steps can be performed
efficiently in parallel. In particular,

11-6 Lecture 11: Algebraic Techniques

Theorem 2 The determinant of an n×n matrix can be computed in O(log2 n) time using O(nω+2) processors.

By combining this result with the algebraic matching algorithm, we can design an efficient parallel method to
determine whether a graph has a perfect matching (YES or NO).

11.5.1 Checking for a Perfect Matching in Parallel

To check for a perfect matching in parallel, we can assign each processor to remove one edge e = uv and verify
whether G− e still contains a perfect matching. However, the main difficulty lies in coordinating all processors
to focus on the same matching, since a graph may have exponentially many perfect matchings. The Isolation
Lemma provides an elegant way to handle this issue.

Lemma 1 (Isolation Lemma) Let X = {1, . . . ,m} be a set of elements, and let F = {S1, . . . , Sk} be a family
of distinct subsets of X. Assign each element xi ∈ X an independent random weight w(xi) chosen uniformly
from {1, . . . , 2m}. Then,

P[the minimum-weight set in F is unique] >=
1

2
.

Remark. At first glance, this result may seem counterintuitive because the number of subsets k can be as large
as 2m. Since each subset has a total weight in the range {1, . . . , 2m2}, one might expect several subsets to share
the same minimum weight. However, the lemma guarantees that with probability greater than 1/2, there will
be exactly one subset with the smallest total weight.

Proof. Let us fix an element xi and define the following:

Y+
i : the family of all sets in F that include xi

Y−i : the family of all sets in F that exclude xi

αi = min
S∈Y−i

w(S)− min
S′∈Y+

i

w(S′ − {xi})

Observe that if αi < w(xi), then xi cannot appear in any minimum-weight set, since there exists a set S′ ∈ Y+
i

with smaller weight than w(S′ − {xi}). Hence, for any S ∈ Y−i ,

w(S) < w(S′ − {xi}) + w(xi) = w(S′).

Conversely, when αi > w(xi), every minimum-weight set must contain xi.

We call xi ambiguous if αi = w(xi).

Note that αi does not depend on w(xi), and w(xi) is sampled uniformly from {1, . . . , 2m}. Therefore,

P[xi is ambiguous] ≤ 1

2m
.

Using the union bound, we get

P[some xi is ambiguous] ≤ 1

2
.

Thus, when no element is ambiguous, the minimum-weight set is guaranteed to be unique.

Lecture 11: Algebraic Techniques 11-7

Matching using the Isolation Lemma:

Let x ∈ E and let F be the set of all perfect matchings. By the Isolation Lemma, if we assign random weights
from {1, . . . , 2m} to the edges, then with probability greater than 1

2 , the minimum-weight perfect matching is
unique.

Let Xij = 2wij , where wij is the weight of the edge uivj . Define B as the modified Tutte matrix whose entries
are given by these weighted terms.

Lemma 18.8: If there exists a unique minimum-weight perfect matching in G with total weight W , then:

(i) det(B) 6= 0, and

(ii) the largest power of 2 dividing det(B) is 2W .

Proof: All other perfect matchings (apart from the unique minimum-weight one) have total weights in {W +
1,W + 2, . . . }. Thus, each term in det(B) has the form ±2W ,±2W+1, . . .

Factor out 2W from all terms:
det(B) = 2W (1 + a1 · 21 + a2 · 22 + . . .)

where each ai is an integer (possibly negative or zero). Since the sum inside the parentheses is odd, it is nonzero,
implying that det(B) 6= 0. Hence, 2W is the largest power of 2 dividing det(B).

Algorithm 3 Parallel Algorithm for Matching

Choose each wij uniformly at random from {1, . . . , 2m}, where m = |E|
Construct the Tutte matrix B using the wij values
Compute det(B) in parallel, and determine the largest W such that 2W divides det(B)
if det(B) = 0 then

return no perfect matching
end if
for each uivj ∈ E in parallel do

Compute det(Bij), where Bij is the minor obtained by deleting row i and column j
if det(Bij) 6= 0 then

Find the largest power of 2, say 2W
′
, that divides det(Bij)

if W ′ + wij = W then
Output edge uivj as part of the perfect matching

end if
end if

end for

References

[1] Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, Cambridge University Press. Avail-
able at: https://rajsain.files.wordpress.com/2013/11/randomized-algorithms-motwani-and-raghavan.pdf

[2] Sepehr Assadi, CS 466/666: Randomized Algorithms (Fall 2023), Rutgers University. Available at:
https://sepehr.assadi.info/courses/cs466(6)-f23/#FT87

[3] Mohammad R. Salavatipour, CMPUT 675: Randomized Algorithms (Fall 2005), University of Alberta.
Available at: https://webdocs.cs.ualberta.ca/%7Emreza/courses/Random05/index.html

