CMPUT 498/501: Advanced Algorithms Fall 2025

Lecture 10 (Oct 6, 2025): Random Walks on Graphs

Lecturer: Mohammad R. Salavatipour Scribe: Priyanshu Thakkar, Bhavya Thakkar

10.1 Random Walks

A random walk is a process that models a path of successive random steps. Let there be a sequence of
independent and identically distributed random variables X1, Xo, ... taking values in R¢, representing the steps
of the walk. Starting from an initial position z € R?, the random walk is given by the sequence (S,,),>0 where

So=2, and S, =S5,_1+ X, forn > 1.
The position at time n can be expressed as

Sn :Z—FZXL

The key property is that each step X; is chosen independently from the same distribution, independent of
previous steps or the current position. At each discrete time step, the walk moves from its current location by
adding a randomly chosen displacement.

Although the individual steps are independent random variables, the positions Sy, Sy, Sa, ... themselves form a
dependent sequence, since each position depends on all previous steps.

Definition 1 (2-SAT Problem) Given a 2-CNF formula ®, i.e., a formula consisting of m clauses on n
variables, each of the form
(l‘g V —\563) A (".731 vV —|334) N ($3 vV —|l‘8) VAN

we ask whether the formula ® is satisfiable.

Algorithm 1 Randomized 2-SAT Algorithm

x < arbitrary assignment in {0, 1}"

while there exists an unsatisfied clause do
Pick an unsatisfied clause C'
Pick uniformly at random one of the two variables in C'
Flip its value

end while

return z

Analysis: Assume that ® is satisfiable, and let A denote a satisfying assignment. We refer to the values of
variables in A as correct values. Let n denote the total number of variables, and let X; represent the number
of variables in the current iteration that have the correct value with respect to A. The algorithm terminates
when X; = n, and note that all X; > 0.
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The algorithm stops when X; = n. In each iteration, the value of X; changes by exactly one, i.e.,

|Xz' — Xi—&-l‘ =1.

This behavior can be viewed as a random walk on a line with a barrier at 0. At every step, we move one position
either to the left or to the right.

r—— ———o————0—— 00—
0 1—1 i i+1 n
Our goal is to determine the expected time to reach n. Note that

PX,y1=1|X,=0=1.
Claim 1 Let 1 < X; < n —1 and consider a random unsatisfied clause C'. Then

1 1
P[X¢+1:j+1|Xz‘=ﬂZ§, and P[Xi+1:j_1|Xi:j]§§o

Proof. Consider an unsatisfied clause C' that disagrees with A in at least one variable. We increase the number
of agreements with probability at least 3:

If both variables disagree with A, the count increases by 1 with probability 1,
If one variable disagrees, the count increases by 1 with probability %

Thus the claim follows. ]

However, this process is not a Markov chain.

To address this, we define another random walk Yp, Y7, ... that is a Markov chain and serves as a pessimistic
estimator for X;. Let Yy = X, and define:

. . 1 , , 1
PlYiy1=1]Y; =0 =1, P[K+1=]+1|Yi=ﬂzia P[E+1:]_1|Yi:j]:§~
Observation 1 The expected time for'Y to reach n is an upper bound on the expected time for X to reach n.

Let Z; denote the number of steps required to reach n from j, and define h; = E[Z;]. We can write h; as

hjy1+hj_y

hi =E[Z] = E[3(1+Z;-1) + 5(1+ Zj)] = =1

+ 1.

The boundary conditions are
ho=hy+1, h, = 0.

Lemma 1 For all0<i<mn-—1, we have hy = h;y1 + 2i + 1.

Proof. We proceed by induction on i.

Base Case: For i =0, we have hg = hy + 1 = hy + 2(0) + 1, so the relation holds.
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Inductive Step: Assume the relation holds for some ¢ > 0, i.e., h; = h;4+1 + 2i + 1. From the recurrence
relation, we have
Zhj = hj—l + hj+1 + 2.

Solving for hj1:
hj+1 = th — hjfl — 2.

By the inductive hypothesis, hj_1 = h; +2(j —1) + 1, so
hj+1=2hj—(hj+2(j—1)+1)—2=hj—2j—1.

This completes the induction. [ |

Theorem 1 If ¢ is satisfiable, the expected number of steps required to reach a satisfying assignment is at most

n?.

Proof. By the lemma, summing from i =0toi=mn — 1:

Corollary 1 If we run the algorithm for 2n? steps, we find a solution (if one exists) with probability at least
%, By repeating this process o times, we can find a solution in 2an? steps with probability at least 1 — 27,

10.2 Random Walks on Graphs

In a graph, we begin at a vertex and arbitrarily select one of its neighbors and proceed to it. We again randomly
select a neighbor from this vertex and proceed to it, and we continue this process indefinitely. This arbitrary
sequence of vertices visited in this manner is called a random walk on the graph. Random walks are finite
Markov chains with the property of time-reversibility. Mathematical models of random walks on graphs and
finite Markov chains are quite similar to one another. Any Markov chain can be modeled as a random walk
on a directed graph whose edges can be weighted. In addition, time-reversible Markov chains are essentially
equivalent to random walks on undirected graphs, and symmetric Markov chains are equivalent to random walks
on regular symmetric graphs.

Applications: Random walks on graphs have a wide range of important applications. They are used in
approximation and estimation problems such as computing permanents and estimating volumes. Random
walks also play a crucial role in randomized selection algorithms, derandomization of randomized algorithms,
probability amplification, and pseudo-random generation.

Algorithm 2 Random Walk on Graph
Start from a vertex s € V
fort=1to T do
Choose a uniformly random neighbor v of current vertex u
U= v
end for
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Quantities of Interest:

e Hitting time: For vertices u,v € V, the hitting time H,, is the expected number of steps required to
reach v starting from wu:
H,, = E[# of steps to reach v | start at u].

e Commute time: The expected number of steps to go from u to v and back:

Cu'u - Hu'u + H’uu-

e Cover time: The expected number of steps to visit all vertices starting from wu:

Cy, = E[# of steps to visit all vertices | start at u], Cg = maxC,,.
u

Application: Undirected s-t Connectivity (USTConn) - For an undirected graph G(V, E) and two
nodes s,t € V, the problem is whether s and ¢ are connected. This problem is easily solvable in O(m + n) time
by using DFS or BFS. But for extremley large graphs, a space-efficient solution is needed.

With randomness and random walks, the problem can solved in O(logn) space, that is, in randomized log-space.
Thus, USTConn € RL. In a breakthrough result, Reingold (2005) showed that actually this can in fact be done
deterministically with the same space complexity, proving that USTConn € L.

10.2.1 Analysis of Random Walks Using Resistance Graphs

We can analyze random walks by thinking of the graph G as an electrical circuit. In this case, every node of
the circuit is a vertex in (G, and every edge has a resistance of 1 unit.

Using the fundamental concepts of electrical circuits. Kirchhoff’s Current Law states that current coming into
a node equals to current leaving out of the node. Ohm’s Law relates voltage V, resistance R, and current [
through the equation

V =RI

For resistors in series and parallel connections, the effective resistance is determined as follows:

Series:  Riotal = R1 + Ro,

1 1 1 . . RiRy
Parallel: = — + — hich Rigtal = —————.
aralle R 7R which gives total Rt R,

Definition: The effective resistance between two nodes u and v is the potential difference (i.e., voltage)
between u and v when one unit of flow is sent from u to v.

Theorem 2 Let G be a graph and let each edge be a unit resistor. Let Ry, be the effective resistance between
vertices u and v. Then the commute time between u and v is

Cuv = 2mRyy,

where m is the number of edges in G.
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Proof. Suppose we connect a battery that injects deg(z) units of current into each node x, such that there is
2m units of flow out of v.

Let &, be the voltage difference between u and v.

We have:

deg(u) = Z (current from u to x).
ur€lR

Each current term can be expressed as:

Z Dy = Z ((I)uv - (I)xv) = deg(u)q)uv - Z Dy

ureE ur€lR urElR

Thus,

(pI’U
B, =1 . 1
* MZE:E deg(u) o

Let deg(u) denote the degree of node u, and consider the first step of a random walk. Then:

H.
H,, =1 E LA
- deg(u)
ur€eFE

Notice that equations (1) and (2) are the same linear equations for all nodes, which implies

Hyp = Py

Performing the same operation in reverse — injecting from every node and getting 2m from u gives
Hyy=®,.

In this second experiment, the flow is reversed. So, 2m units of current flow into v, and deg(x) units flow out
of all nodes.

Combining the two:

e 2m units going into u
e 2m units going out of v

e In/out flow from every other node = 0

:>(I)uv+q)/ =Hyy+ Hyy =2m - Ry, = Cyy.

VU

Example 1: Random walk on a path P, Consider a path graph with n vertices labeled 1,2,... n.
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In this simple graph, the effective resistance between vertices 7 and j (where ¢ < j) is simply the number of
edges between them:

Rij =j—1.
Using the relationship Cj; = 2mR;; where m = n — 1 edges, we obtain the commute time:

Cij = Hij + Hji = 2(7”L — 1)(] — Z)

For the endpoints of the path:
Cin = Hip+ Hp1 =2(n —1)%

This shows that the commute time grows quadratically with the length of the path.

Example 2: Lollipop graph L,, The lollipop graph consists of a complete graph K, /> (the "head”) connected
to a path of n/2 vertices (the ”stick”). This graph demonstrates asymmetry in hitting times.

n
— nodes

Let u be the endpoint of the path (away from the clique) and v be the vertex at which the path connects to the
clique. The effective resistance between v and v is:

n
Ruv = 5

The total number of edges in the lollipop graph is the sum of edges in the complete graph and the path:

m = (%2) + g € 0(n?).

The commute time is:
Cuv = Hyp + Hyy = 2mRy, € O(n).
But, the hitting times are very asymmetric. Starting from the clique it takes:

H,, = (g>2 € O(n?).

to walk to the end of the path takes: This means that the other direction takes a lot longer:
Hy,, = Cuv —Hy, € ®(n3)
This asymmetry shows that H,, # H,, in general. Walking from the narrow path into the highly connected

clique is much harder than the other direction, as the random walk tends to get ”lost” in the clique before
finding the specific vertex v.
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Theorem 3 For any connected graph G with n vertices and m edges, the cover time satisfies

C(G) <2m(n—1).

Proof. Let T be a spanning tree of G and perform a depth-first search (DFS) traversal starting from vertex w.
The DFS visits each edge of T" exactly twice (once in each direction), giving a walk:

U = Vg, V1,V2,...,U2n-2.
The cover time from u is bounded by the total time to traverse this DFS walk:

Cu S Hvovl + H'Ul'U2 +o Hv2n—3vzn—2'

Each edge in the spanning tree is traversed twice, so we can rewrite this as:

Cu < Z (va +va) = Z va = Z 27/77‘]%1)71)-

vweT vweT vweT
Since each edge in the tree has resistance R, < 1 (as it’s a single edge), and the tree has n — 1 edges:

Cy <2m(n—1).

Since this holds for any starting vertex u, we have C'(G) = max, C,, < 2m(n — 1). ]

Examples: This general bound can be tightened for specific graph families:

e Path graph: For a path with n vertices and m = n — 1 edges, the cover time is Cg € O(n?).

e Complete graph K,,: For the complete graph with m = (%) € ©(n?) edges, the cover time is C; € O(n?).
This is the worst-case scenario among common graph families.
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