
Stable Matching (or marriage)

n doctors and n hospitals•

each doctor has an ordered preference list of hospitals•

each hospital has an ordered preference list of doctors•

Goal: Find a perfect matching (each doctor matched to one

hospital)

•

Definition A matching of doctors and hospitals is

unstable if there is an "unstable pair"

Suppose (H',D) and (H,D') are two matched pairs; then

(H,D) is unstable if H prefers D to D' and D' prefers H

to H' (so both H and D prefer to break their current

pairing)

Introduction

Topics and pre-requisites•

Course Policies•

Grading Scheme

5 Assignments (60% for ugrad; 50% for grad)○

Final exam 40%○

Scribe notes 10% (for grad)○

•

References•

Credit: tables/figures from KW slides

 Lecture 1 Page 1

Def. A stable matching is a perfect matching with

no unstable pairs.

Stable matching problem. Given the preference

lists of n hospitals and n doctors, find a stable

matching (if one exists)

so both prefer to break the tie.

Gale-shapely deferred acceptance Algorithm

Input: preference list for hospitals & doctors

Goal: Find a stable matching M

let M =

while there is an unmatched hospital h do:

h offers to the next doctor on its list it has not

made an offer before

○

if d has no job then add (h,d) to M

We develop an algorithm that always finds one

(hence proof of existence too)

Question: Do stable matchings always exist?

Not obvious immediately.

 Lecture 1 Page 2

if d has no job then add (h,d) to M○

if d has job with h' and h'>h do nothing○

if d has job with h' and h>h' then:

remove (h',d) from M & add (h,d) to M

○

return M

Things to consider:

The algorithm terminates and outputs a matching•

Hospitals go down" their list; doctors go-up"•

Observation: once a doctor gets a job then s/he never becomes

jobless

Why a matching at the end?

No hospital is matched to more than 1 doctor.•

No doctor is matched to more than 1 hospital.•

If a hospital h is not matched at the end--> there is an unmatched

doctor d;

•

h must have proposed to d; so either it is matched or d was matched.•

Why M is stable?

suppose there is an unstable pair:•
 Lecture 1 Page 3

Why M is stable?

suppose there is an unstable pair:

(d,h) and (d',h')

•

case 1: h' never offered to d•

case 2: h' made an offer to d:

d accepted but later switched to h ○

d rejected, so it was matched to h">h'>h○

•

This matching is in favor of hospitals; can do it based on

preference lists of doctors

National resident matching program (NRMP).

Centralized to match med-school students to hospitals.

Began in 1952 to fix unraveling of offer dates.

Originally used the “Boston Pool” algorithm.

Algorithm overhauled in 1998.

- med-school student optimal

- deals with various side constraints

(e.g., allow couples to match together)

Greedy Algorithms

used for optimization problems (e-g. coin change, shortest

paths in weighted graphs, scheduling)

•

Decisions made are locally the best and often never changed.•

Algorithms developed are typically efficient.
 Lecture 1 Page 4

Algorithms developed are typically efficient.•

Proof often is based on induction and uses an exchange

argument.

•

Example 1: Interval scheduling

Given a set of n jobs J•

each job j has a start time 𝑠௝ and finish 𝑓௝•

- Two jobs are compatible if their intervals don't overlap.

Goal: Find a largest set of compatible jobs.•

Several ways to design by greedy:

1- sort by 𝑠௝

2 - Sort by interval length 𝑓௝ − 𝑠௝

3 - Sort by 𝑓௝: this might work!

Greedy Interval Scheduling
 Lecture 1 Page 5

Proposition. Can implement in O(n log n) time.

・Keep track of job j* that was added last to S.

・Job j is compatible with S iff 𝑠௃̇ ≥ 𝑓௝∗ .

・Sorting by finish times takes O(n log n) time.

Proof: Assume greedy is not optimal

Let 𝑖ଵ, 𝑖ଶ , … , 𝑖௞ denote set of jobs selected by greedy.•

Let 𝑗ଵ, 𝑗ଶ , … , 𝑗௠ denote set of jobs in an optimal solution with

𝑖ଵ = 𝑗ଵ, 𝑖ଶ = 𝑗ଶ, … , 𝑖௥ = 𝑗௥ for the largest possible value of r.

•

Clearly m>k•

Theorem: This algorithm finds an optimum schedule.

Greedy Interval Scheduling

Sort the jobs based on finish time so

let

For i=1 to n do

if does not conflict with anything in S

add i to S

Return S

 Lecture 1 Page 6

we can replace 𝑗௥ାଵ in opt with 𝑖௥ାଵ•

We can use this fact to prove the following by induction on m:•

Lemma: For any m>=1, after our algorithm completes m

intervals, an optimum has completed <=m intervals.

Example 2: What if we have to schedule all the jobs but on

minimum number of machines?

Exercie: Think of another Greedy Algorithm for this problem.

Example 3: Minimum Lateness schedule

Input: n jobs, each has a length and deadline .

if job i starts at time will finish at time•

and will have lateness max{o, }•

Goal: Find an ordering of the jobs (to run on a machine) that

minimizes the max

 Lecture 1 Page 7

Greedy: What order?

sort by deadline s.t.

Observation 1: There is an optimum solution with no idle time.

Definition: Given a schedule S, an inversion is a pair of jobs

i and j such that: i < j but j is scheduled before i.

Observation 2. The earliest-deadline-first schedule is the

unique idle-free schedule with no inversions.

Observation 3. If an idle-free schedule has an inversion, then

it has an adjacent inversion

(think of sorting, if it's not sorted two adjacent items are
 Lecture 1 Page 8

(think of sorting, if it's not sorted two adjacent items are

wrong order)

Key Observation: Exchanging two adjacent, inverted jobs i and

j reduces the number of inversions by 1 and does not increase

the max lateness.

suppose we swap i,j. let be the new lateness of these jobs.

Note: lateness of other jobs don't change and

Proof: Define S* to be an optimal schedule with the fewest

inversions.

・Can assume S* has no idle time.

・Case 1. [S* has no inversions] Then S = S*.

・Case 2. [S* has an inversion]: let i–j be an adjacent inversion

- exchanging jobs i and j decreases the number of inversions by 1

without increasing the max lateness

- contradicts “fewest inversions” part of the definition of S*.

Theorem: Earliest deadline-first schedule S is optimum.

Example 3: Minimum Lateness schedule

Input: n jobs, each has a length and deadline .

if job i starts at time will finish at time•

 Lecture 1 Page 9

Input: n jobs, each has a length and deadline .

if job i starts at time will finish at time•

and will have lateness max{o, }•

Goal: Find an ordering of the jobs (to run on a machine) that

minimizes the max

Greedy: What order?

sort by deadline s.t.

Observation 1: There is an optimum solution with no idle time.

Definition: Given a schedule S, an inversion is a pair of jobs

i and j such that: i < j but j is scheduled before i.

 Lecture 1 Page 10

Observation 2. The earliest-deadline-first schedule is the

unique idle-free schedule with no inversions.

Observation 3. If an idle-free schedule has an inversion, then

it has an adjacent inversion

(think of sorting, if it's not sorted two adjacent items are

wrong order)

Key Observation: Exchanging two adjacent, inverted jobs i and

j reduces the number of inversions by 1 and does not increase

the max lateness.

suppose we swap i,j. let be the new lateness of these jobs.

Note: lateness of other jobs don't change and

Proof: Define S*` to be an optimal schedule with the fewest

inversions.

・Can assume S* has no idle time.

・Case 1. [S* has no inversions] Then S = S*.

・Case 2. [S* has an inversion]: let i–j be an adjacent

inversion

- exchanging jobs i and j decreases the number of inversions by

1 without increasing the max lateness

Theorem: Earliest deadline-first schedule S is optimum.

 Lecture 1 Page 11

Define the proper subproblem & a table to
store the solution
(what is it you are storing?)

Dynamic Programming

Most important step (of missed by students)

Example 1: weighted interval scheduling

1 without increasing the max lateness

- contradicts “fewest inversions” part of the definition of S*.

 Lecture 1 Page 12

 Lecture 1 Page 13

 Lecture 1 Page 14

 Lecture 1 Page 15

