Introduction

» Topics and pre-requisites

 Course Policies

e Grading Scheme
o 5 Assignments (60% for ugrad; 50% for grad)
o Final exam 40%
o Scribe notes 10% (for grad)

e References

Stable Matching (or marriage)

e n doctors and n hospitals

o each doctor has an ordered preference list of hospitals

o each hospital has an ordered preference list of doctors

e Goal: Find a perfect matching (each doctor matched to one
hospital)
EEIEIEIEIE BRI

Bob Alice Dorit Ernie Clara CH MGH BW MTA BID

m Dorit Bob Alice Clara Ernie BID BW MTA MGH CH Credit: tables/figures from KW slides

m Bob Ernie Clara Dorit Alice m BW BID MTA CH MGH
AIice Dorit Clara Bob Ernie mMGH CH MTA BID BW

(¢;l | Bob Dorit Alice Ernie Clara S0l MTAT BW CH BID MGH

Definition A matching of doctors and hospitals is
unstable if there is an "unstable pair"

Suppose (H',D) and (H.D') are two matched pairs; then
(H.D) is unstable if H prefers D to D' and D' prefers H
to H' (so both H and D prefer to break their current

pairing) N SZD
\’\\/ ° D/

< 9

Lecture 1 Page 1

so both prefer to break the tie.

Def. A stable matching is a perfect matching with
no unstable pairs.

Stable matching problem. Given the preference
lists of n hospitals and n doctors, find a stable
matching (if one exists)

EEIEE _ ENENEN

Atlanta Xavier | Yolanda Zeus Xavier Boston Atlanta = Chicago
25 0 Yolanda Xavier Zeus \IEVEW Atlanta Boston Chicago

Atlanta Boston Chicago

(o [N Xavier Yolanda Zeus

A-Y is an unstable pair for matching M = { A-Z, B-Y, C-X }

Question: Do stable matchings always exist?
Not obvious immediately.

We develop an algorithm that always finds one
(hence proof of existence too)

Gale-shapely deferved acceptance Algorithm

Input: preference list for hospitals & doctors
Goal: Find a stable matching M
et M = &
while there is an unmatched hospital h do:
o h offers to the next doctor on its list it has not

made an offer before

Lecture 1 Page 2

o if d has no job then add (h,d) to M

o if d has job with h' and h'>h do nothing

o if d has job with W' and h>h' then:
remove (W,d) from M & add (h,d) to M

return M

Bob Alice Dorit Ernie Clara m CH MGH MTA BID
m Dorit Bob Alice Clara Ernie BID BW MTA MGH CH
m Bob Ernie Clara Dorit Alice m BW BID MTA CH MGH
Alice Dorit Clara Bob Ernie MGH CH MTA BID BW

CH Bob Dorit Alice Ernie Clara m MTA BW CH BID MGH

Observation: once a doctor gets a job then s/he never becomes
jobless

Things to consider:
» The algorithm terminates and outputs a matching
* Hospitals go down" their list; doctors go-up"

Why a matching at the end?

* No hospital is matched to more than 1 doctor.

* No doctor is matched to more than 1 hospital.

o If a hospital h is not matched at the end--> there is an unmatched
doctor d;

* h must have proposed to d; so either it is matched or d was matched.

Why M is stable?

Lecture 1 Page 3

Why M is stable?

e suppose there is an unstable pair: 4 N >
() andl (d') YN W Av
e case 1: h' never offered to d ><

o case 2: W' made an offer to d:

o d accepted but later switched to h

o d rejected, so it was matched to W'>h'>h

This matching is in favor of hospitals; can do it based on
preference lists of doctors

National resident matching program (NRMP).
Centralized to match med-school students to hospitals.
Began in 1952 to fix unraveling of offer dates.
Originally used the “Boston Pool” algorithm.
Algorithm overhauled in 1998.

- med -school student optimal

- deals with various side constraints

(e.g., allow couples to match together)

Greedy Algorithms

used for optimization problems (e-g. coin change, shortest
paths in weighted graphs, scheduling)

Decisions made are locally the best and often never changed.

Algorithms developed are typically efficient.
Proof often is based on induction and uses an exchange

argument.

Example 1: Interval scheduling

* Given a set of n jobs J
o each job | has a start time s; and finish f;
- Two jobs are compatible if their intervals don't overlap.

e Goal: Find a largest set of compatible jobs.

a

C

jobsdandg
7 are incompatible

Several ways to design by greedy:

JI‘

- : —
1- sort by s e

2 - Sort by interval length f; —s; e

3 - Sort by f;: this might work!

Lecture 1 Page 5

Greedy Interval Scheduling

Sort the jobs based on finish time so ERNE R Sievx

(6t g,;z,t&
For =1 to n do

if [s¢, %] does not conflict with anything in S
add i to S

Return S

Proposition. Can implement in O(n log n) time.
- Keep track of job j* that was added last to S.
» Job j is compatible with S iff s; = f; .

* Sorting by finish times takes O(n log n) time.

Theorem: This algorithm finds an optimum schedule.

Proof: Assume greedy is not optimal

o Let iy, iy, ..., i denote set of jobs selected by greedy.

o Let ji,jo, ... jm denote set of jobs in an optimal solution with
i1 = Jj1,ip = Jo, -, iy = jr for the largest possible value of r.

o Clearly m>k

job i,,; exists and finishes no later than j,,;

i ’ i % | : i .
Greedy: oy 0y i, | i Le e i

Optimal: J1) Jr i tt

job j,,1 exists why not replace
because m >k job j,,; with job i, ?

e we can replace j,.1 in opt with i,
e We can use this fact to prove the following by induction on m:

Lemuma: For any m>=1, after our algorithm completes m

intervals, an optimum has completed <=m intervals.

Example 2: What if we have to schedule all the jobs but on

minimum number of machines?
Exercie: Think of another Greedy Algorithm for this problem.

Example 3: Minimum Lateness schedule

Input: n jobs, each has a length tand deadline df,

o if job i starts at time S; will finish at time S+t

o and will have lateness max{o,£_& }=X:

Goal: Find an ordering of the jobs (to run on a machine) that

minimizes the max {,Q;}
(

Lecture 1 Page 7

EBRERED
3 2 1 4 3 2

6 8 9 9 14 15
lateness = 2 lateness = 0 max lateness = 6
d;=9 d,=8 dg=15 di=6 ds=14 di=19
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greedy: What order?

sort by deadline s.t. A\ <ds € -~ &390

Observation 1: There is an optimum solution with no idle time.

an optimal schedule d=4 d=6 d=112
0 1 2 3 4 5 6 7 8 9 10 11
an optimal schedule d=4 d=6 d=12
with no idle time 7 1 2 3 4 5 6 7 8 9 10 10

Definition: Given a schedule S, an inversion is a pair of jobs

[and | such that: [< | but j is scheduled before i.

inversion if i <j

e veraion
an inversion -

recall: we assume the jobs are numbered so thatdi<d>< ... <d,

Observation 2. The earliest-deadline -first schedule is the

unique idle-free schedule with no inversions.

Observation 3. If an idle-free schedule has an inversion, then

it has an adjacent inversion

Lecture 1 Page 8

(think of sorting, if it's not sorted two adjacent items are

wirong order)

Key Observation: Exchanging two adjacent, inverted jobs i and

j reduces the number of inversions by 1 and does not increase
the max lateness.
inversion if i < j 7
before .
Skl i]
bl]

r
suppose we swap ij. let L | f. be the new lateness of these jobs.
Note: lateness of other jobs don't change and (' & A

Theorem: Earliest deadline-first schedule S is optimum.

Proof: Define S* to be an optimal schedule with the fewest
(Inversions.

* Can assume S* has no idle time.

- Case 1. [S* has no inversions] Then S = S*.

- Case 2. [S* has an inversion T: let i— be an adjacent inversion
- exchanging jobs [and | decreases the number of inversions by 1
without increasing the max lateness

- contradicts “fewest inversions” part of the definition of S*.

Example 3: Minimum Lateness schedule

Input: n jobs, each has a length tand deadline d,:
o if job [starts at time S:will finish at time Sc++

Lecture 1 Page 9

INPUT: N JOUS, LACA NAS & [ENGTA “ NG ALAAline U]
« if job i starts at time S: will finish at time S+t

o and will have lateness max{o,£-d; }=X:

Goal: Find an ordering of the jobs (to run on a machine) that

minimizes the max {Q(q}
(

(1]213]4]5 /6]
3 2 1 4 3 2
6 8 9 9 14 15
lateness = 2 lateness = 0 max lateness = 6
d;=9 d,=8 dg=15 di=6 ds=14 =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Greedy: What order?

sort by deadline s.t. A\ <d, < -0 &34

Observation 1: There is an optimum solution with no idle time.

an optimal schedule d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 11

an optimal schedule d=4 d=6 d=12
with no idle time 0]

Definition: Given a schedule S, an inversion is a pair of jobs

[and | such that: i < j but j is scheduled before i.

inversion if i <j
s
an inversion

recall: we assume the jobs are numbered so thatdi<d>< ... <dy

Lecture 1 Page 10

Observation 2. The earliest-deadline -first schedule is the

unique idle-free schedule with no inversions.

Observation 3. If an idle-free schedule has an inversion, then
it has an adjacent inversion

‘think of sorting, if it's not sorted two adjacent items are

P

wirong order)

Key Observation: Exchanging two adjacent, inverted jobs i and

—

reduces the number of inversions by 1 and does not increase
the max lateness.
inversion ifi <j P
before .
it i]
. I

[
suppose we swap |,j. let L & be the new lateness of these jobs.
Note: lateness of other jobs don't change and /Qi < AL

Theorem: Earliest deadline-first schedule S is optimum.

Proof: Define S** to be an optimal schedule with the fewest
nversions.

 Can assume S* has no idle time.

- Case 1. [S* has no inversions] Then S = S*.

 Case 2. [S* has an inversion]: let i—j be an adjacent

nversion

- exchanging jobs [and | decreases the number of inversions by

Lecture 1 Page 11

1 without increasing the max lateness

- contradicts “fewest inversions” part of the definition of S*.

ynamic Programming

One & tle most poverhul technque in designing

eHicient a\\go{'\%\ms; often osked aloont in jb\g wlerview
\+ can be quite invo\ved and Solve imivi cate P\/o\o\zms

The basic Principle s Swnple but Comivxﬁ up wile
He vb\»’r aPon&O(A Hat works can be quite d/\a\\u\ﬁiwﬁ)

Mamn icl,eﬂ\ 2

— break He onlo\awt +o smaller Suby volblems

—Selve He Subpmlo(ems and Store He Parfi'ia/(

Solutions Into a Fakie

— Use PO\YM s6luhons rcu,u‘s}\/eb +o Solve He
oigger Subproblems.
ost impgrtant step (of missed by students)

E

Define the proper subproblem & a table to
store the solution
(what 1s 1t you are storing?)

xample 1: weighted interval scheduling

\

Grivenn o Se'\'j of n jb\o}: <. Start tHwre

1[{ :f—inis\/\ +vre

W Va\we [wennt

Goal: Find o subset o compahble jobs (ne Hee overlap)

w¥h maimum Aot valwe

How does @Y‘e% A'O?
we saw ﬂwf% works wel when all W=t

w=\

» Eavliest X-ims\/\ e &rs’r: J"‘T_-k___\
w =106

. cl c _c[_.“_s__\
» Decide based on \aryeast w 4o smaller —

What 5 a goed suloproblem)

— \lers onsider Hhe gols in incrensiry order &
Limsn dime; so Bt o - f,

— For eade gob g ler pO) be the laryest index
(&y S+ g6b 1 does mot ovelop With 9,
(PGY=e F no suck 4o exists)

— ler Opt[5] denoke He mar wesht K o

|

Lecture 1 Page 13

Schedmle Hhat wes only gobs (a subset)
£ gehs in {1,220 St p
L c\@xrkj owr gooad s Compuhry Opt (1] %,
and opt [1L] 15 hwiel (=),
— When Cons(dmn‘D geb g ¢
Case 1z opHmum o He Bt] jobs does NAT
A R
\Lase 77 9 belongs do dhe best scdredude &
the Fast 15 So H muwt be He last in
Hot sobedide and we have 4o find 4o
best Shedmle & joks 1---PGD

opt []= wj+ 0PT[pPu)]

_ Wwe clon/+ know whii da 6(— 1’6\L o CasSeS So

opt -1
opt W)= moo/\i v
N S TUES
optlol-o ot (l‘é P — ¢
/\
4 Ty

veo.y WY

wvo.y WY

Index

vy =2
11 ! p1) = 0
=4
2 1 p2) =0
v = 4
3 _ pB3) =1
vy =7
4 ! p4) =0
vs = 2
5 i p(5) =3
Vg = 1
6 P p) =3

Weiqwted — intervol — DP

— Sort Hhe oy S Q‘sf—c & ~-’é£v\
— Comput PG) o end
_ 0[S} =o
_ Ror (e—l| o n do
OLi | = max .LOLC«\-) PRYA +OLP(C)}B

— vetuwyw O Ln]

— This (,om?vd-c) He Valre z& oP’r‘\m\M M O(n\fjv\)
L Ts 4ind tHe octnod sdredinle ¢ frnce Lade
He Selection

Lecture 1 Page 15

