Week 7: Divide and Conquer

Agenda:

- Divide and Conquer technique
- Multiplication of large integers
- Exponentiation
- Matrix multiplication
2- Divide and Conquer:

- To solve a problem we can break it into smaller subproblems, solve each one recursively, and then merge the solutions
- Have already seen some examples: Mergesort, Quicksort,
- Here we see two examples that have applications in security of communication (cryptography)

Example 1: Multiplication of large integers:

- Suppose we are dealing with integers that have hundreds of bits (e.g. 256 or 512 bits).
- Such integers are too big to fit into one memory word. Need to design an algorithm for multiplication
- The naive algorithm for addition takes $O(n)$ steps if the integers are n bits each.
- For multiplication, the elementary algorithm takes $O(n^2)$ steps.
- Goal: do it faster, i.e. $o(n^2)$.
- Suppose that I and J are the two n bit integers to be multiplied.
- Say $I = w \cdot 2^{n/2} + x$ and $J = y \cdot 2^{n/2} + z.$

\[
I = \begin{array}{c}
w \\
x
\end{array}
\]

\[
J = \begin{array}{c}
y \\
z
\end{array}
\]
• Now it is easy to see that $I \cdot J = w \cdot y \cdot 2^n + (w \cdot z + x \cdot y)2^{n/2} + xz$.

• To multiply by 2^n only needs to shift-left n bits; each shift-left takes $O(1)$ time.

• So to multiply by 2^n, and $2^{n/2}$ (for the second term), and add the results: $O(n)$ time.

• We have 4 multiplications of integers of $\frac{n}{2}$ bits each: $w \cdot y$, $w \cdot z$, $x \cdot y$, and $x \cdot z$.

• So, the time required for multiplying I and J is: $T(n) = 4T(\frac{n}{2}) + O(n)$.

• Using master theorem: $T(n) \in \Theta(n^2)$.

• But this is not better than the naive algorithm!! What should we do?

• The bottleneck here is: too many recursive calls; so try to reduce the number of instances of size $\frac{n}{2}$.

• **Observation:** Let $r = (w+x)(y+z) = w \cdot y + (w \cdot z + x \cdot y) + x \cdot y$.

• So r contains all the 4 terms we need to compute $I \cdot J$, but not individually.

• What if we compute $p = w \cdot y$ and $q = x \cdot y$, too? Then we have:

 - $(w \cdot z + x \cdot y) = r - p - q$
 - $w \cdot y = p$
 - $x \cdot y = q$
So the recursive formula for the time is:

\[T(n) = 3T\left(\frac{n}{2}\right) + O(n) \]

Using Master theorem: \(T(n) \in \Theta(n^{\log_2 3}) \). Thus:

Theorem: We can multiply two \(n \) bit integers in \(O(n^{1.585}) \) time.

Example 2: Exponentiation

- Given integers \(A, g, p \), want to compute \(g^A \mod p \).

- We saw that this problem has application in cryptography in CMPUT 272.

- Assume that \(A \) is a huge integer with hundreds of bits (e.g. 200 bits).

- The naive algorithm to compute \(g^A \) takes \(g \) and multiplies it \(A \) times.

- If \(A \) has a few hundred bits (say 400) this is going to take \(\approx 2^{400} \) steps.
Week 7: Divide and Conquer

- But there is a faster way to compute g^A;
- Observation:
 \[g^{24} = (g^{12})^2 = ((g^6)^2)^2 = (((g^3)^2)^2)^2 = (((((g^2 \cdot g)^2)^2)^2)^2)^2 \]
- note that taking square of a number needs only one multiplication; this way, to compute g^{24} we need only 5 multiplication instead of 24.

Procedure Expon-mod (g, A, p)

\[
\begin{align*}
\text{if } A = 0 & \text{ then} \\
& \quad \text{return } 1 \\
\text{else} & \\
\quad \text{if } A \text{ is odd then} \\
& \quad \quad a \leftarrow \text{Expon-mod } (g, A - 1, p) \\
& \quad \quad \text{return } a \cdot g \mod p \\
\quad \text{else} \\
& \quad \quad a \leftarrow \text{Expon-mod } (g, A/2, p) \\
& \quad \quad \text{return } a \cdot a \mod p
\end{align*}
\]

- Let $T(A)$ be the number of multiplications required to compute $g^A \mod p$. For simplicity, assume $A = 2^k$ for some $k \geq 1$.

\[
\begin{align*}
T(A) & = T\left(\frac{A}{2}\right) + 1 \\
& = T\left(\frac{A}{4}\right) + 1 + 1 \\
& \vdots \\
& = T\left(\frac{A}{2^k}\right) + k
\end{align*}
\]
- Therefore, $T(A) \in O(\log A)$.

5
Example 3: Matrix multiplication:

- Assume we are given two \(n \times n \) matrix \(X \) and \(Y \) to multiply.
- These are huge matrices, say \(n \approx 50,000 \).
- The native algorithm will have to multiply one row of \(X \) by one column of \(Z \) (i.e. \(O(n) \) multiplication) to find out only one entry of the result \(Z \).
- Total time will be \(O(n^3) \).
- Want to use divide and conquer to speed things up; for simplicity assume \(n \) is a power of 2.

- Break each of \(X \) and \(Y \) into 4 submatrices of size \(\frac{n}{2} \times \frac{n}{2} \) each:

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
= \begin{bmatrix}
I & J \\
K & L
\end{bmatrix}
\]

- Therefore:

\[
\begin{align*}
I &= AE + BG \\
J &= AF + BH \\
K &= CE + DG \\
L &= CF + DH
\end{align*}
\] \(\rightarrow \)

need 8 multiplications of subproblems of size \(\frac{n}{2} \) each

- We also need to spend \(O(n^2) \) time to add up these results.
Matrix multiplication (cont’d):

- If \(T(n) \) is the time to multiply two matrices of size \(n \times n \) each, then:
 \[
 T(n) = 8T\left(\frac{n}{2}\right) + O(n^2)
 \]

- Using master theorem: \(T(n) \in \Theta(n^{\log_28}) = \Theta(n^3) \).

- So this is as bad as the naive algorithm. No improvement yet.

- We use an idea similar to the one for multiplication of large integers: reduce the number of subproblems using a clever trick.

- compute the following 7 multiplications (each consisting of two subproblems of size \(\frac{n}{2} \) each):
 \[
 S_1 = A(F - H) \\
 S_2 = (A + B)H \\
 S_3 = (C + D)E \\
 S_4 = D(G - E) \\
 S_5 = (A + D)(E + H) \\
 S_6 = (B - D)(G + H) \\
 S_7 = (A - C)(E + F)
 \]

- Then:
 \[
 I \quad = \quad S_5 + S_6 + S_4 - S_2 \\
 = \quad (A + D)(E + H) + (B - D)(G + H) + D(G - E) - (A + B)H \\
 = \quad AE + DE + AH + DH + BG - DG + BH - DH + \\
 \quad DG - DE - AH - BH \\
 = \quad AE + BG
 \]
Matrix multiplication (cont’d):

• Similarly, it can be verified easily that:

\[
\begin{align*}
J &= S_1 + S_2 \\
K &= S_3 + S_4 \\
L &= S_1 - S_7 - S_3 + S_5
\end{align*}
\]

• So to compute \(I, J, K,\) and \(L\), we only need to compute \(S_1, \ldots, S_7\); this requires solving seven subproblems of size \(\frac{n}{2}\), plus a constant (at most 16) number of addition each taking \(O(n^2)\) time.

\[
T(n) = 7T\left(\frac{n}{2}\right) + O(n^2)
\]

• Using master theorem and since \(\log_2 7 \approx 2.808\):

\[
T(n) \in O(n^{2.808})
\]

• For \(n = 50,000\): \(n^3 \approx 10^{17}\) and \(n^{2.808} \approx 10^{13}\); \(\rightarrow\) this algorithm is about 10,000 times faster than the naive algorithm.