Expected Work Search: Combining Win Rate and Proof Size Estimation

Owen Randall, Martin Müller, Ting-Han Wei, and Ryan Hayward

University of Alberta

Introduction

- Expected Work Search
 - 2-player perfect information solving algorithm
- Combines existing heuristics
 - Estimates win rate (Monte Carlo Tree Search)
 - Estimates **proof size** (Proof Number Search)
 - Minimizes **Expected Work** to efficiently find proofs
- Results
 - Orders of magnitude faster than tested programs solving Go and Hex
 - First program to **solve 5x5 Go** with positional superko rules

Motivation

- Search has many modern applications
 - Optimization
 - Logistics
 - Artificial Intelligence
- Solving games is a convenient test bed
 - Well behaved
 - Easily scalable
- Evaluated EWS by solving Go and Hex
 - Simple rules, complex state space

Example 5x5 Hex position

Solving Games

- Determine who wins under **optimal play**
- Requires a **proof tree**
- Positions with **all** losing moves are **losing positions** (AND)
- Positions with any winning move are winning positions (OR)

Heuristics

- Win rate estimation
 - Prioritizes strong moves
 - No incentive to find small solutions
- Proof size estimation
 - Prioritizes small solution size
 - Often suggests bad moves
- Both have strengths and weaknesses
- EWS combines both to eliminate weaknesses

Example where win rate fails

Example where proof size fails

Expected Work

- A position is either **winning** or **losing**
- Estimate the expected amount of work to solve
- Search positions with low Expected Work

Winning position (OR)

Expected Work Calculation

- Losing case:
- All children must be searched and proven
- Sum of winning children's EW

$$EW_{loss}(X) := \sum_{i=1}^{n} EW_{win}(C_i)$$

Expected Work Calculation

- Winning case:
- Weighted sum of losing children's EW
- Multiply by the probability that a given child is searched

$$EW_{win}(X) := \sum_{i=1}^{n} (EW_{loss}(C_i) \cdot \prod_{j=1}^{i-1} WR(C_j))$$

Selection

- Traverse the search tree until a leaf node is found
- Sort children in ascending order of the following formula: $EW_{loss}(X)/(1-WR(X))$
- Where X is a child, WR is win rate, and EW is expected work
- Always select the first ordered child
- Move ordering of children determines EW_{win}
 - This ordering minimizes EW_{win}

Expansion

- Create new nodes
- Check for terminal children
- Initialize WR and EW with random simulation results
- Return if the expanded node is proven

Backpropagation

- Back up new information along the path chosen by selection:
- Win rate
- Expected Work
- Proofs

Results

- Evaluated on 600 6x6 Go positions
- Compared against Go-Solver, and ablation removing win rate or proof size estimation

171 (28.5%)

14 (2.3%)

19.58

EWS-PS

Solving Square Go Boards

- Evaluated EWS on solving empty Go boards
- Compared against Go-Solver, MIGOS (S.O.T.A with Japanese rules), and ablation

	3×3 Go		$4 \times$	4 Go	5×5 Go		
Program	Time (s)	Nodes	Time (s)	Nodes	Time (h)	Nodes	
EWS	0.053	161	13.626	495,494	5.252	2,605 M	
EWS-WR	0.074	796	40.396	1,562,718	> 24	-	
EWS-PS	0.070	232	18.320	744,169	> 24	-	
Go-Solver	1.299	1,628	51.522	799,607	> 24	-	
MIGOS SSK	< 3.3	$\sim 25,\!118$	~3,960	~3,162 M	-	-	

Solving NxN Hex Boards

- Comparing against:
 - An enhanced alpha beta solver we developed
 - Morat Monte Carlo Tree Search
 - Morat Proof Number Search

	4×4	4×4 Hex 5×5 Hex		5×5 Hex		6×6 Hex	
Program	Time (s)	Nodes	Time (s)	Time (s) Nodes		Nodes	
EWS	0.002	283	0.253	37,034	0.422	93,963,192	
Enhanced AB	0.004	1,673	3.935	698,402	> 24	-	
Morat MCTS	0.035	4,644	29.669	3,554,546	> 24	-	
Morat PNS	0.054	8,871	758.102	154,539,591	> 24	-	

Thank you for your time!

Questions?

Contact me at: davidowe@ualberta.ca

References

- ALLIS, L., HERIK, H., AND HUNTJENS, M. Go-Moku and Threat-Space Search. Computational Intelligence 12 (1994), pp. 7–23.
- [2] ALLIS, L., VAN DER MEULEN, M., AND VAN DEN HERIK, H. Proof-Number Search. Artificial Intelligence 66, 1 (1994), pp. 91–124.
- [3] ANSHELEVICH, V. V. The Game of Hex: An Automatic Theorem Proving Approach to Game Programming. In AAAI/IAAI 17 (2000), pp. 189–294.
- [4] ANSHELEVICH, V. V. A Hierarchical Approach to Computer Hex. Artificial Intelligence 134, 1 (2002), pp. 101–120.
- [5] ARNESON, B., HAYWARD, R., AND HENDERSON, P. Solving Hex: Beyond Humans. In Computers and Games (2010), pp. 1–10.
- [6] BENSON, D. Life in the Game of Go. Information Sciences 10 (1976), pp. 17–29.
- [7] BROWNE, C. B., POWLEY, E., WHITEHOUSE, D., LUCAS, S. M., COWL-ING, P. I., ROHLFSHAGEN, P., TAVENER, S., PEREZ, D., SAMOTHRAKIS, S., AND COLTON, S. A Survey of Monte Carlo Tree Search Methods. *IEEE Transactions on Computational Intelligence and AI in Games 4*, 1 (2012), pp. 1–43.
- [8] CAMPBELL, M. The Graph-History Interaction: On Ignoring Position History. In ACM Annual Conference on the Range of Computing (1985), pp. 278–280.
- [9] DOE, E., WINANDS, M. H. M., KOWALSKI, J., SOEMERS, D. J. N. J., GÓRSKI, D., AND BROWNE, C. Proof Number Based Monte-Carlo Tree Search. In *IEEE Conference on Games* (2022), pp. 206–212.
- [10] DU, H., WEI, T. H., AND MÜLLER, M. Solving NoGo on Small Rectangular Boards. In Advances in Computer Games (2024), Springer Nature Switzerland, pp. 39–49.
- [11] ENZENBERGER, M., MÜLLER, M., ARNESON, B., AND SEGAL, R. Fuego—An Open-Source Framework for Board Games and Go Engine Based on Monte Carlo Tree Search. *IEEE Transactions on Computational Intelligence and AI in Games 2* (2011), pp. 259–270.
- [12] EWALDS, T. V. Playing and Solving Havannah, 2012. University of Alberta Master's Thesis (2012), https://github.com/tewalds/morat.

- [13] HAYWARD, R., BJÖRNSSON, Y., JOHANSON, M., KAN, M., PO, N., AND VAN RIJSWIJCK, J. Solving 7×7 Hex: Virtual Connections and Game-State Reduction. Advances in Computer Games: Many Games, Many Challenges (2004), pp. 261–278.
- [14] HENDERSON, P., ARNESON, B., AND HAYWARD, R. Solving 8x8 Hex. IJCAI International Joint Conference on Artificial Intelligence (2009), pp. 505–510.
- [15] KISHIMOTO, A., AND MÜLLER, M. A General Solution to the Graph History Interaction Problem. In *Proceedings of the 19th National Conference* on Artificial Intelligence (2004), pp. 644–649.
- [16] KISHIMOTO, A., WINANDS, M., MÜLLER, M., AND SAITO, J. T. Game-Tree Search Using Proof Numbers: The First Twenty Years. *ICGA Journal* 35 (2012), pp. 131–156.
- [17] KNUTH, D. E., AND MOORE, R. W. An Analysis of Alpha-Beta Pruning. Artificial Intelligence 6, 4 (1975), pp. 293–326.
- [18] KOCSIS, L., AND SZEPESVÁRI, C. Bandit Based Monte-Carlo Planning. In Machine Learning: ECML (2006), pp. 282–293.
- [19] MÜLLER, M. Playing it Safe: Recognizing Secure Territories in Computer Go by Using Static Rules and Search. In *Game Programming Workshop* (1997), pp. 80–86.
- [20] NAGAI, A. DF-PN Algorithm for Searching AND/OR Trees and its Applications. University of Tokyo Ph.D. Thesis (2002).
- [21] NETO, J. P., AND TAYLOR, W. Game Mutators for Restricting Play. Game & Puzzle Design (2015), pp. 64–65.
- [22] NIU, X., KISHIMOTO, A., AND MÜLLER, M. Recognizing Seki in Computer Go. In Advances in Computer Games. 11th International Conference (2006), vol. 4250 of Lecture Notes in Computer Science, Springer, pp. 88– 103.
- [23] NIU, X., AND MÜLLER, M. An Improved Safety Solver for Computer Go. In Computers and Games: 4th International Conference (2006), vol. 3846 of Lecture Notes in Computer Science, Springer, pp. 97–112.
- [24] NIU, X., AND MÜLLER, M. An Open Boundary Safety-of-Territory Solver for the game of Go. In *Computers and Games. 5th International Conference* (2007), vol. 4630 of *Lecture Notes in Computer Science*, Springer, pp. 37– 49.
- [25] NIU, X., AND MÜLLER, M. An Improved Safety Solver in Go using Partial Regions. In Computers and Games. 6th International Conference (2008), vol. 5131 of Lecture Notes in Computer Science, Springer, pp. 102–112.

- [26] PAWLEWICZ, J., AND HAYWARD, R. B. Scalable Parallel DFPN Search. In Computers and Games (2013), pp. 138–150.
- [27] PAWLEWICZ, J., AND LEW, L. Improving Depth-First PN-Search: 1 + Epsilon Trick. In Proceedings of the 5th International Conference on Computers and Games (2006), pp. 160–171.
- [28] RANDALL, O., WEI, T.-H., HAYWARD, R., AND MÜLLER, M. Improving Search in Go Using Bounded Static Safety. In *Computers and Games* (2022), pp. 14–23.
- [29] ROSIN, C. Multi-armed Bandits with Episode Context. Annals of Mathematics and Artificial Intelligence 61 (2010), pp. 203–230.
- [30] SAFFIDINE, A., AND CAZENAVE, T. Developments on Product Propagation. In *Computers and Games* (2013), pp. 100–109.
- [31] SCHAEFFER, J., BURCH, N., BJÖRNSSON, Y., KISHIMOTO, A., MÜLLER, M., LAKE, R., LU, P., AND SUTPHEN, S. Checkers is Solved. *Science* 317, 5844 (2007), pp. 1518–1522.
- [32] SCHAEFFER, J., AND PLAAT, A. New Advances in Alpha-Beta Searching. In Proceedings of the 1996 ACM 24th annual Conference on Computer Science (1996), pp. 124–130.
- [33] SHIH, C.-C., WU, T.-R., WEI, T. H., AND WU, I.-C. A Novel Approach to Solving Goal-Achieving Problems for Board Games. In *Proceedings of the* 36th AAAI Conference on Artificial Intelligence (2021), pp. 10362–10369.
- [34] SILVER, D., HUANG, A., MADDISON, C., GUEZ, A., SIFRE, L., DRIESS-CHE, G., SCHRITTWIESER, J., ANTONOGLOU, I., PANNEERSHELVAM, V., LANCTOT, M., DIELEMAN, S., GREWE, D., NHAM, J., KALCHBRENNER, N., SUTSKEVER, I., LILLICRAP, T., LEACH, M., KAVUKCUOGLU, K., GRAEPEL, T., AND HASSABIS, D. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 529 (2016), pp. 484–489.
- [35] SILVER, D., HUBERT, T., SCHRITTWIESER, J., ANTONOGLOU, I., LAI, M., GUEZ, A., LANCTOT, M., SIFRE, L., KUMARAN, D., GRAEPEL, T., LILLICRAP, T., SIMONYAN, K., AND HASSABIS, D. A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play. *Science 362*, 6419 (2018), pp. 1140–1144.
- [36] SLATE, D., AND ATKIN, L. Chess Skill in Man and Machine. In Springer-Verlag (1977), pp. 82–118.
- [37] SONG, J., AND MÜLLER, M. An Enhanced Solver for the Game of Amazons. *IEEE Transactions on Computational Intelligence and AI in Games* 7 (2015), pp. 16–27.

- [38] SUTTON, R. S., AND BARTO, A. G. Reinforcement Learning: An Introduction. *MIT Press* (1998), pp. 39-40.
- [39] VAN DER WERF, E., HERIK, H., AND UITERWIJK, J. Solving Go on Small Boards. ICGA Journal 26 (2003), pp. 92–107.
- [40] VAN DER WERF, E., AND WINANDS, M. Solving Go for Rectangular Boards. *ICGA Journal 32*, 2 (2009), pp. 77–88.
- [41] WAGNER, J., AND VIRÁG, I. Solving Renju. Joint International Computer Games Association 24 (2001), pp. 30–35.
- [42] WINANDS, M. H. M., BJÖRNSSON, Y., AND SAITO, J.-T. Monte-Carlo Tree Search Solver. In *Computers and Games* (2008), pp. 25–36.
- [43] WU, T.-R., SHIH, C.-C., WEI, T.-H., TSAI, M.-Y., HSU, W.-Y., AND WU, I.-C. AlphaZero-based Proof Cost Network to Aid Game Solving. In International Conference on Learning Representations (2022).
- [44] ZOBRIST, A. A New Hashing Method with Application for Game Playing. ICGA Journal 13 (1990), pp. 69–73.

Conclusion

- Expected Work Search combines proof size and win rate estimation
 - Balances these heuristics
 - Covers previous weaknesses
- Strong results on Go and Hex
 - Orders of magnitude faster than tested programs
 - New results solving 5x5 Go
- Future work
 - Parallelize
 - Use EW as a problem complexity estimator
 - Evaluate on more problems

Solving with Hex Knowledge

- Significantly reduces search space
- 8x8 can be solved
- Search is much slower, but requires less nodes
- More Hex knowledge is required for S.O.T.A.

А	В	С	D			
4	XX))>				
3	O	(X)			3	
	2	K)))>	X)		
		()	\bigcirc	<u>O</u>		1
		×,	B	∼ c	D	

	6×6		7 imes 7		8×8	
Program	6×6 Time (s)	Nodes	Time (s)	Nodes	Time (s)	Nodes
EWS	EWS 1,519		-	-	-	-
EWS with knowledge	0.005	26	0.588	2,318	234.449	555,158

Selection

- Traverse the search tree until a leaf node is found
- Select the best child according to the move ordering
- If the selected child has been expanded, continue selection
- Otherwise, expand the leaf node

Initial Evaluation

- Random simulations
- Win rates = wins / visits
- Initialize EW as the sum of the branching factors of positions in random simulations

$$EW_0(X) := \sum_{i=0}^m b(P_i)$$

Results

- Compared against different independent solving implementations
 - GoSolver, MIGOS, Enhanced AB, Morat PNS, Morat MCTS
- Ablation study
 - Removed proof-size / win-rate information
 - Performance drops
- Evaluated a variety of Go positions
 - Strong general performance
 - New results on empty boards
- Evaluated empty nxn Hex
 - Strong results with and without knowledge

Future Work

- Improved implementation
- Additional games
- Parallelize
- EWS Estimation
- Further solving
- Further evaluation

Objective	Timeline		
Refactor to improve code			
Rectangular board solving	May - June 2024		
>64 move game solving			
Solving NoGo			
Solving Amazons	June September 2024		
Solving Gomoku	June - September 2024		
Paper on new results			
EWS in parallel workers	September - November 2024		
EWS in manager program			
Estimating game complexity	November - February 2025		
Paper on EWS estimation			
Solving 9x9, 10x10 Hex			
Solving 6x6 Go	February - May 2025		
Solving larger NoGo/Amazons/Gomoku	reordary - May 2025		
Paper on new results			
Thorough EWS settings evaluation	May - June 2025		
Finish writing thesis	June - September 2025		

Improved Implementation

- Refactor
 - Improve software quality
- Remove artificial limitations
 - 64-bit data types limit games with >64 moves
 - Go and Hex implementations do not support

rectangular boards

- One month

Objective	Timeline		
Refactor to improve code			
Rectangular board solving	May - June 2024		
>64 move game solving			

Additional Games

- NoGo
 - Compare against new SBH results
- Amazons
 - Integrate existing endgame databases
- Ninuki
 - Gomoku variant
 - Capturing
 - More complicated
- Three months

Parallelization

EWS in parallel workers	September - November 2024
EWS in manager program	

- Currently running single threaded
- Integrate EWS in existing manager-worker program
- Use EWS implementation as the worker program
- Change manager to use EW and WR info for job selection
- Two months

EWS Estimation

- Use EW for solving complexity estimation
- Collect a dataset of solved positions
- Use regression
- May need to tweak the EWS implementation / transform the data
- Three months

Further Solving

Solving 9x9, 10x10 Hex	
Solving 6x6 Go	Fobruery Mey 2025
Solving larger NoGo/Amazons/Gomoku	rebruary - May 2025
Paper on new results	

- Utilize new parallelization and estimation
- Solve larger problems
 - 6x6 Go
 - 9x9, 10x10 Hex
 - Other large rectangular boards
 - 6x5 Amazons
 - 6x6, 7x7 NoGo
- Three months

Empirical Evaluation

Thorough EWS settings evaluation	May - June 2025
Finish writing thesis	June - September 2025

- Hyperparameter sweep
- Test alternate EWS settings
 - EW initialization
 - Move ordering
 - Asymmetric algorithm
 - Proof Cost Network
- One month

 $EW_{loss}(A)/(1-WR(A)) < EW_{loss}(B)/(1-WR(B))$ A < B $EW_{loss}(A) \cdot WR(A) < EW_{loss}(B) \cdot WR(B)$ A < B

Heuristics

- Win rate estimation
 - Monte Carlo Tree Search
 - Prioritize strong moves
- Proof size estimation
 - Proof number search
 - Prioritize reducing the solution size
- Both have strengths and weaknesses
- EWS combines both using Expected Work

Solving Example

- Red = Losses

- Green = Wins

Losing positions have all losing move

 Winning positions have at least one winning move

Search comparison

PNS will choose the smallest proof size

-

- MCTS will choose the highest win rate
- EWS will minimize EW
- Accounts for proof size and win rate

Implementation

- All nodes are stored in an unordered table
- Table is indexed by hashes of game positions
- Zobrist hashing is used
- Table size is 2^22 nodes
- Linear probing is used to resolve hash conflicts
- Nodes are pruned from memory when solved, or if the table is too full
- Current principle variation is never pruned

Baseline Comparison

- Weak baseline: basic negamax algorithm with transposition table
- Strong baseline: Enhanced AB algorithm with:
 - Iterative deepening
 - Alpha Beta pruning
 - A custom heuristic value function for hex
 - Transposition table
 - The history heuristic
 - Killer move heuristic
 - Relevancy zones
 - Relevancy zone pattern matching

EWS Estimation

- Use EW for solving complexity estimation
- Collect a dataset of solved positions
- Use regression
- May need to tweak the
 EWS implementation /
 transform the data
- Three months

Estimating game complexity	November - February 2025	
Paper on EWS estimation	Rovember Tebruary 2025	

Solving Time

Expansion

- For all legal moves:
- If the move is a terminal winning move, the node is solved as a win
- If the move is not terminal, create a new child node
- New nodes evaluate initial win rate and EW
- If the expanded node has no unsolved children left, it is solved as a loss

Algorithm 2 Expand X: returns whether X is solved and if so whether X is winning

- 1: X.expanded := true
- 2: for all legal moves m do
- 3: **if** m is a terminal winning move for X **then**
- 4: return true, true \triangleright Solved win
 - else if m is not a terminal losing move for X then
 - Create node C
 - C.expanded = false
 - C.move := m
- 9: Evaluate C.winRate
- 10: Evaluate C.expectedWorkLoss
- 11: Evaluate C.expectedWorkWin
- 12: Add C to X.children
- 13: if X.children is empty then
- 14: **return** true, false
- 15: else

5:

6.

7:

8:

- 16: return false, false ▷ Unsolved
- ▷ Solved loss

Bounded Static Safety

Type	BSS	LAP	Benson	$\begin{array}{c} \text{BSS} \\ +\text{search} \end{array}$	LAP + search	$\begin{array}{c} \text{Benson} \\ +\text{search} \end{array}$	BSS no EL	BSS no IP	BSS no EL no IP
Av. first solve	27.29	31.56	42.67	14.89	16.35	17.79	30.83	27.73	31.28

(a) IRGs of Fig. 3a

(b) Corresponding value trees

