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Introduction

-  Expected Work Search
- 2-player perfect information solving algorithm
- Combines existing heuristics
- Estimates win rate (Monte Carlo Tree Search)
- Estimates proof size (Proof Number Search)
- Minimizes Expected Work to efficiently find proofs
- Results
- Orders of magnitude faster than tested programs solving Go and Hex

- First program to solve 5x5 Go with positional superko rules
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- Search has many modern applications 4 4
- Optimization Z z
- Logistics 1 1
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- Artificial Intelligence Example 7x7 Go position

- Solving games is a convenient test bed
- Well behaved
- Easily scalable

- Evaluated EWS by solving Go and Hex

- Simple rules, complex state space

Example 5x5 Hex position



Solving Games

Determine who wins under
optimal play

Requires a proof tree

Positions with all losing moves
are losing positions (AND)

Positions with any winning
move are winning positions
(OR)
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Heuristics

Win rate estimation
- Prioritizes strong moves

-  Noincentive to find small solutions

Proof size estimation
- Prioritizes small solution size

- Often suggests bad moves

Both have strengths and weaknesses

EWS combines both to eliminate weaknesses
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Expected Work

A position is either winning or losing
Estimate the expected amount of work to solve

Search positions with low Expected Work
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Expected Work Calculation L L

- Losing case:
- All children must be searched and proven Z

- Sum of winning children’s EW

EWZOSS(X) .= Z Eszn(Cz)
1=1



Expected Work Calculation L W ?

- Winning case:

- Weighted sum of losing children’s EW

- Multiply by the probability that a given
child is searched

n 1—1

Eszn(X) — Z(EWZOSS(Ci) ' H WR(CJ))

i=1 j=1



4)[ Expansion
Traverse . Back- Update
Selection .
nodes propagation nodes
Position to
solve

Expected Work Search




Selection

- Traverse the search tree until a leaf node is found

Sort children in ascending order of the following formula:
Emoss (X)/(I_WR(X))

Where Xis a child, WR is win rate, and EW is expected work

Always select the first ordered child

Move ordering of children determines EW .

- This ordering minimizes EW .



Expansion Simulations
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Create new nodes ., .
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Check for terminal children P & Terminal child

Initialize WR and EW with New nodes
random simulation results

Return if the expanded node is
proven

Expanding node



Backpropagation

Back up new information along the
path chosen by selection:

Win rate

Expected Work

Proofs




EWS solving time (s)

Results

Evaluated on 600 6x6 Go positions
Compared against Go-Solver, and ablation removing win rate or proof size estimation
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EWS solving time (s)
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Program A.V' salve tr Faster # Timeouts
time (S) than EWS
EWS 2.32 - -
Go-Solver 22.63 31 (5.2%) 11 (1.8%)
EWS-WR 19.70 96 (16.0%) 11 (1.8%)
EWS-PS 19.58 171 (28.5%) | 14 (2.3%)
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Solving Square Go Boards

- Evaluated EWS on solving empty Go boards
- Compared against Go-Solver, MIGOS (S.O.T.A with Japanese rules), and ablation

3 x 3 Go 4 x4 Go b x5 Go
Program Time (s) Nodes Time (s) Nodes Time (h) Nodes
EWS 0.053 161 13.626 495,494 5.252 2,605 M
EWS-WR 0.074 796 40.396 | 1,562,718 > 24 -
EWS-PS 0.070 232 18.320 744,169 > 24 -
Go-Solver 1.299 1,628 51.522 799,607 > 24 -
MIGOS SSK £ F:D ~ 25,118 || ~3,960 | ~3,162 M - -




Solving NxN Hex Boards

- Comparing against:
- Anenhanced alpha beta solver we developed
- Morat Monte Carlo Tree Search
- Morat Proof Number Search

4 x 4 Hex 5 X 5 Hex 6 X 6 Hex
Program Time (s) | Nodes || Time (s) Nodes Time (h) Nodes
EWS 0.002 283 0.253 37,034 0.422 93,963,192
Enhanced AB 0.004 1,673 3.935 698,402 > 24 -
Morat MCTS 0.035 4,644 29.669 3,554,546 > 24 -
Morat PNS 0.054 8,871 || 758.102 | 154,539,591 > 24 -




Thank you for your time!

Questions?

Contact me at: davidowe®@ualberta.ca
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Conclusion

Expected Work Search combines proof size and win rate estimation

Strong results on Go and Hex

Balances these heuristics
Covers previous weaknesses

Orders of magnitude faster
than tested programs
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New results solving 5x5 Go

Back-

propagation

Future work

Parallelize
Use EW as a problem complexity estimator
Evaluate on more problems
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Solving with Hex Knowledge

- Significantly reduces search space

- 8x8 can be solved

- Search is much slower, but requires less nodes

- More Hex knowledge is required for S.O.T.A.

6 X6 T x 7 8 X 8
Program 6 x 6 Time (s) Nodes Time (s) | Nodes || Time (s) | Nodes
EWS 1,519 93,963,192 - - - -
EWS with knowledge 0.005 26 0.588 2,318 || 234.449 | 555,158




Selection

- Traverse the search tree until a
leaf node is found

- Select the best child according
to the move ordering

- If the selected child has been
expanded, continue selection

- Otherwise, expand the leaf node




Initial Evaluation

Random simulations
Win rates = wins / visits

Initialize EW as the sum of the branching
factors of positions in random simulations




Results

Compared against different independent solving implementations
- GoSolver, MIGOS, Enhanced AB, Morat PNS, Morat MCTS

Ablation study
- Removed proof-size / win-rate information
- Performance drops

Evaluated a variety of Go positions
- Strong general performance
- New results on empty boards

Evaluated empty nxn Hex
- Strong results with and without knowledge



Future Work

- Improved implementation
- Additional games

- Parallelize

- EWS Estimation

- Further solving

- Further evaluation

Objective

Timeline

Refactor to improve code
Rectangular board solving

=64 move game solving

May - June 2024

Solving NoGo
Solving Amazons
Solving Gomoku

Paper on new results

June - September 2024

EWS in parallel workers

EWS in manager program

September - November 2024

Estimating game complexity

Paper on EWS estimation

November - February 2025

Solving 9x9, 10x10 Hex
Solving 6x6 Go
Solving larger NoGo,/Amazons/Gomoku

Paper on new results

February - May 2025

Thorough EWS settings evaluation

May - June 2025

Finish writing thesis

June - September 2025




Improved Implementation

- Refactor

Objective Timeline

Refactor to improve code

- |mprove software qua | Ity Rectangular board solving May - June 2024

>64 move game solving

- Remove artificial limitations
- 64-bit data types limit games with >64 moves
- Go and Hex implementations do not support
rectangular boards

- One month



Additional Games

NoGo
- Compare against new SBH results

Amazons

- Integrate existing endgame databases

Ninuki A B C
- Gomoku variant
- Capturing
- More complicated

Three months

Solving NoGo
Solving Amazons
Solving Gomoku

Paper on new results

June - September 2024
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Parallelization

EWS in parallel workers

EWS in manager program

September - November 2024

Currently running single threaded

Integrate EWS in existing manager-worker program

Use EWS implementation as the worker program
Change manager to use EW and WR info for job selection

Two months




EWS Estimation

Use EW for solving
complexity estimation

Collect a dataset of
solved positions

Use regression

May need to tweak the
EWS implementation /
transform the data

Three months

Estimating game complexity

Paper on EWS estimation

November - February 2025
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log_10(EW) et
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4x5 R
log_2(Time)
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Further Solving

Solving 9x9, 10x10 Hex
Solving 6x6 Go

Solving larger NoGo/Amazons/Gomoku

Paper on new results

February - May 2025

Utilize new parallelization and estimation
Solve larger problems

- 6x6 Go

- 9x9, 10x10 Hex

- Other large rectangular boards

- 6x5 Amazons

- 6x6, 7x7 NoGo

Three months

A B € E F
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Thorough EWS settings evaluation May - June 2025

Empirical Evaluation

Finish writing thesis June - September 2025

- Hyperparameter sweep

| EWioss(4)/(1-WR(A)) < EWioss(B)/(1-WR(B))
- Test alternate EWS settings

—

- EW nitialization A< B

- Move ordering l

- Asymmetric algorithm EWoss (A) y WR(A) & Emoss(B) ’ WR(B)
—

- Proof Cost Network A<B

- One month



Heuristics

Win rate estimation

- Monte Carlo Tree Search

- Prioritize strong moves

Proof size estimation

- Proof number search

- Prioritize reducing the solution size

Both have strengths and weaknesses

EWS combines both using Expected Work

https://www.365chess.com/board_editor.php




Solving Example

Red = Losses

Green =Wins

Losing positions have all losing

move

Winning positions have at

least one winning move
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- PNS will choose the

- MCTS will choose the Children:

Search comparison

smallest proof size

highest win rate

Est. proof
- EWS will minimize EW .
: S1Z7C.
- Accounts for proof size
and win rate Est. win

probability:



Implementation

- Allnodes are stored in an unordered table

- Tableis indexed by hashes of game positions

- Zobrist hashing is used

- Tablesizeis 2”22 nodes

- Linear probing is used to resolve hash conflicts

- Nodes are pruned from memory when solved, or if the table is too full

- Current principle variation is never pruned



Baseline Comparison

- Weak baseline: basic negamax algorithm with transposition table
- Strong baseline: Enhanced AB algorithm with:

- Iterative deepening

- Alpha Beta pruning

- A custom heuristic value function for hex

- Transposition table

- The history heuristic

- Killer move heuristic

- Relevancy zones

- Relevancy zone pattern matching
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EWS ESti matio n Estimating game complexity November - February 2025

Paper on EWS estimation

Use EW for solving 7
complexity estimation IS _7§7_E_)w_ I P | _e_st.

7x6 est.
Collect adatasetof @ 2 | —=—————mmm—e—me e e et e ———

solved positions pwl  6XTEW | 6xg " 0xT est.

Use regression

May need to tweak the
EWS implementation / °
transform the data 4xd

Three months Solving Time



Expansion

For all legal moves:

If the move is a terminal winning
move, the node is solved as a
win

If the move is not terminal,
create a new child node

New nodes evaluate initial win
rate and EW

If the expanded node has no
unsolved children left, it is
solved as a loss

Algorithm 2 Expand X: returns whether X is solved and if
so whether X is winning

1: X.expanded := true
2: for all legal moves m do
3 if m is a terminal winning move for X then
4 return true, true > Solved win
5: else if m is not a terminal losing move for X then
6 Create node C
7 C.expanded = false
8 C.move :=m
9: Evaluate C'.winRate
10: Evaluate C.expectedWorkLoss
11: Evaluate C.expectedWorkWin
12: Add C to X .children
13: if X .children is empty then
14: return true, false > Solved loss
15: else

16: return false, false > Unsolved




Bounded Static Safety

BSS LAP | Benson || BSS BSS BSS no
Type BSS | LAP |Benson +search | +search|-+search|| no EL | no IP | EL no IP
Av. first
sl 27.29 | 31.66 | 42.67 14.89 16.35 17.79 30.83 | 27.73 31.28
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Solve rate

Solve rate by move number

— BSS

— LAP

—— Benson

-—-=- BSS+search

-== LAP+search

—-== Benson+search
BSS no EL

—-= BSS no IP

—-= BSS no EL no IP
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Move number
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