
Expected Work Search:
Combining Win Rate and
Proof Size Estimation

Owen Randall, Martin Müller, Ting-Han Wei, and Ryan Hayward

University of Alberta

Introduction

- Expected Work Search

- 2-player perfect information solving algorithm

- Combines existing heuristics

- Estimates win rate (Monte Carlo Tree Search)

- Estimates proof size (Proof Number Search)

- Minimizes Expected Work to efficiently find proofs

- Results

- Orders of magnitude faster than tested programs solving Go and Hex

- First program to solve 5x5 Go with positional superko rules

Motivation

- Search has many modern applications

- Optimization

- Logistics

- Artificial Intelligence

- Solving games is a convenient test bed

- Well behaved

- Easily scalable

- Evaluated EWS by solving Go and Hex

- Simple rules, complex state space

Example 7x7 Go position

Example 5x5 Hex position

Solving Games

- Determine who wins under

optimal play

- Requires a proof tree

- Positions with all losing moves

are losing positions (AND)

- Positions with any winning

move are winning positions

(OR)

Tic Tac Toe solving example

Heuristics

- Win rate estimation

- Prioritizes strong moves

- No incentive to find small solutions

- Proof size estimation

- Prioritizes small solution size

- Often suggests bad moves

- Both have strengths and weaknesses

- EWS combines both to eliminate weaknesses

Example where win rate fails

Example where proof size fails

Expected Work

- A position is either winning or losing

- Estimate the expected amount of work to solve

- Search positions with low Expected Work

Losing position (AND) Winning position (OR)

Expected Work Calculation

- Losing case:

- All children must be searched and proven

- Sum of winning children’s EW

Expected Work Calculation

- Winning case:

- Weighted sum of losing children’s EW

- Multiply by the probability that a given

child is searched

Expected Work Search

Selection

- Traverse the search tree until a leaf node is found

- Sort children in ascending order of the following formula:

- Where X is a child, WR is win rate, and EW is expected work

- Always select the first ordered child

- Move ordering of children determines EW
win

- This ordering minimizes EW
win

Expansion

- Create new nodes

- Check for terminal children

- Initialize WR and EW with

random simulation results

- Return if the expanded node is

proven

Simulations

New nodes

Terminal child

Expanding node

Backpropagation

- Back up new information along the

path chosen by selection:

- Win rate

- Expected Work

- Proofs

- Evaluated on 600 6x6 Go positions

- Compared against Go-Solver, and ablation removing win rate or proof size estimation

Results

Solving Square Go Boards

- Evaluated EWS on solving empty Go boards

- Compared against Go-Solver, MIGOS (S.O.T.A with Japanese rules), and ablation

Solving NxN Hex Boards
- Comparing against:

- An enhanced alpha beta solver we developed

- Morat Monte Carlo Tree Search

- Morat Proof Number Search

Thank you for your time!

Questions?

Contact me at: davidowe@ualberta.ca

Conclusion

- Expected Work Search combines proof size and win rate estimation

- Balances these heuristics

- Covers previous weaknesses

- Strong results on Go and Hex

- Orders of magnitude faster

than tested programs

- New results solving 5x5 Go

- Future work

- Parallelize

- Use EW as a problem complexity estimator

- Evaluate on more problems

Solving with Hex Knowledge

- Significantly reduces search space

- 8x8 can be solved

- Search is much slower, but requires less nodes

- More Hex knowledge is required for S.O.T.A.

Selection

- Traverse the search tree until a

leaf node is found

- Select the best child according

to the move ordering

- If the selected child has been

expanded, continue selection

- Otherwise, expand the leaf node

Initial Evaluation

- Random simulations

- Win rates = wins / visits

- Initialize EW as the sum of the branching

factors of positions in random simulations

-

Results

- Compared against different independent solving implementations

- GoSolver, MIGOS, Enhanced AB, Morat PNS, Morat MCTS

- Ablation study

- Removed proof-size / win-rate information

- Performance drops

- Evaluated a variety of Go positions

- Strong general performance

- New results on empty boards

- Evaluated empty nxn Hex

- Strong results with and without knowledge

Future Work

- Improved implementation

- Additional games

- Parallelize

- EWS Estimation

- Further solving

- Further evaluation

Improved Implementation

- Refactor

- Improve software quality

- Remove artificial limitations

- 64-bit data types limit games with >64 moves

- Go and Hex implementations do not support

rectangular boards

- One month

Additional Games

- NoGo

- Compare against new SBH results

- Amazons

- Integrate existing endgame databases

- Ninuki

- Gomoku variant

- Capturing

- More complicated

- Three months

Parallelization

- Currently running single threaded

- Integrate EWS in existing manager-worker program

- Use EWS implementation as the worker program

- Change manager to use EW and WR info for job selection

- Two months

EWS Estimation

- Use EW for solving

complexity estimation

- Collect a dataset of

solved positions

- Use regression

- May need to tweak the

EWS implementation /

transform the data

- Three months

Further Solving

- Utilize new parallelization and estimation

- Solve larger problems

- 6x6 Go

- 9x9, 10x10 Hex

- Other large rectangular boards

- 6x5 Amazons

- 6x6, 7x7 NoGo

- Three months

Empirical Evaluation

- Hyperparameter sweep

- Test alternate EWS settings

- EW initialization

- Move ordering

- Asymmetric algorithm

- Proof Cost Network

- One month

Heuristics

- Win rate estimation

- Monte Carlo Tree Search

- Prioritize strong moves

- Proof size estimation

- Proof number search

- Prioritize reducing the solution size

- Both have strengths and weaknesses

- EWS combines both using Expected Work

https://www.365chess.com/board_editor.php

Solving Example
- Red = Losses

- Green = Wins

- Losing positions have all losing

move

- Winning positions have at

least one winning move

Search comparison

- PNS will choose the

smallest proof size

- MCTS will choose the

highest win rate

- EWS will minimize EW

- Accounts for proof size

and win rate

Implementation

- All nodes are stored in an unordered table

- Table is indexed by hashes of game positions

- Zobrist hashing is used

- Table size is 2^22 nodes

- Linear probing is used to resolve hash conflicts

- Nodes are pruned from memory when solved, or if the table is too full

- Current principle variation is never pruned

Baseline Comparison
- Weak baseline: basic negamax algorithm with transposition table

- Strong baseline: Enhanced AB algorithm with:

- Iterative deepening

- Alpha Beta pruning

- A custom heuristic value function for hex

- Transposition table

- The history heuristic

- Killer move heuristic

- Relevancy zones

- Relevancy zone pattern matching

EWS Estimation

- Use EW for solving

complexity estimation

- Collect a dataset of

solved positions

- Use regression

- May need to tweak the

EWS implementation /

transform the data

- Three months

EW

Solving Time

Expansion

- For all legal moves:

- If the move is a terminal winning

move, the node is solved as a

win

- If the move is not terminal,

create a new child node

- New nodes evaluate initial win

rate and EW

- If the expanded node has no

unsolved children left, it is

solved as a loss

Bounded Static Safety

Absolute values Relative values

Absolute values Relative values

Absolute values Relative values

Absolute values Relative values

Absolute values Relative values

