Expected Work Search:
Combining Win Rate and
Proof Size Estimation

Owen Randall, Martin Muller, Ting-Han Wei, and Ryan Hayward

University of Alberta

Introduction

- Expected Work Search
- 2-player perfect information solving algorithm
- Combines existing heuristics
- Estimates win rate (Monte Carlo Tree Search)
- Estimates proof size (Proof Number Search)
- Minimizes Expected Work to efficiently find proofs
- Results
- Orders of magnitude faster than tested programs solving Go and Hex

- First program to solve 5x5 Go with positional superko rules

Motivation 7 7
6 6
5 5
- Search has many modern applications 4 4
- Optimization Z z
- Logistics 1 1
A B © D E E G
- Artificial Intelligence Example 7x7 Go position

- Solving games is a convenient test bed
- Well behaved
- Easily scalable

- Evaluated EWS by solving Go and Hex

- Simple rules, complex state space

Example 5x5 Hex position

Solving Games

Determine who wins under
optimal play

Requires a proof tree

Positions with all losing moves
are losing positions (AND)

Positions with any winning
move are winning positions
(OR)

>
0O|O|X
X|0|0
X X X X|O|X
X X 0O|0|X OIX
X|O X|0|0 X|®|O
4
X X X
X|O|X O|X
X|0|0 X|0O|O0
X
O|X
X|0O|0

Tic Tac Toe solving example

X
O|2|X
XX

O|O|X |

O|X|X

Heuristics

Win rate estimation
- Prioritizes strong moves

- Noincentive to find small solutions

Proof size estimation
- Prioritizes small solution size

- Often suggests bad moves

Both have strengths and weaknesses

EWS combines both to eliminate weaknesses

A B © D E

Example where win rate fails
A B C D E

5 5
4 4
3 3
2. 2

A B C D E
Example where proof size fails

Expected Work

A position is either winning or losing
Estimate the expected amount of work to solve

Search positions with low Expected Work

L L L L W ?2

2 2

Losing position (AND) Winning position (OR)

o[o]x
x[o]o
| x x| [x x|P|x x|x
X[x olo[x d[x X
x|o x|o]o x|®|o [6)
X x| |x x|x
x[o]x o[x o[x
x|o]o x|ojo o|o
X
o[x
x|o]o

Expected Work Calculation L L

- Losing case:
- All children must be searched and proven Z

- Sum of winning children’s EW

EWZOSS(X) .= Z Eszn(Cz)
1=1

Expected Work Calculation L W ?

- Winning case:

- Weighted sum of losing children’s EW

- Multiply by the probability that a given
child is searched

n 1—1

Eszn(X) — Z(EWZOSS(Ci) ' H WR(CJ))

i=1 j=1

4)[Expansion
Traverse . Back- Update
Selection .
nodes propagation nodes
Position to
solve

Expected Work Search

Selection

- Traverse the search tree until a leaf node is found

Sort children in ascending order of the following formula:
Emoss (X)/(I_WR(X))

Where Xis a child, WR is win rate, and EW is expected work

Always select the first ordered child

Move ordering of children determines EW .

- This ordering minimizes EW .

Expansion Simulations

L L
L L
N N
B B
A A
Create new nodes ., .
L .
a a
L] L] . . . L]
Check for terminal children P & Terminal child

Initialize WR and EW with New nodes
random simulation results

Return if the expanded node is
proven

Expanding node

Backpropagation

Back up new information along the
path chosen by selection:

Win rate

Expected Work

Proofs

EWS solving time (s)

Results

Evaluated on 600 6x6 Go positions
Compared against Go-Solver, and ablation removing win rate or proof size estimation

102 E 102 4
101 - 10 +
100 - 100 -
10714 1014
102+ 1072+
10-3 -l g 1073
4
/ 2
0—4 0—4

107 1073 1072 107! 10° 10' 107
Go-Solver solving time (s)

107 107 1072 107! 10° 10!

EWS-WR solving time (s)

102

102

101 o

100 4

10—1 4

10—2 4

10—3 4

0—4

107 107® 1072 107! 10° 10!

EWS-PS solving time (s)

102

EWS solving time (s)

102.

101.

100.

10—1_

10—24

10—3-

-4

102_

101-

100.

10—1_

10—2_

10—3_

-4

e
s W&

107% 1073 1072 107!
Go-Solver solving time (s)

10° 10 10

1074 1072 1072 107! 10° 10 107
EWS-WR solving time (s)

102_

101.

100.

10—1-

10—2_

10—3_

-4

104 10~ 10-2 10-!
EWS-PS solving time (s)

Program A.V' salve tr Faster # Timeouts
time (S) than EWS
EWS 2.32 - -
Go-Solver 22.63 31 (5.2%) 11 (1.8%)
EWS-WR 19.70 96 (16.0%) 11 (1.8%)
EWS-PS 19.58 171 (28.5%) | 14 (2.3%)

10°

10!

102

Solving Square Go Boards

- Evaluated EWS on solving empty Go boards
- Compared against Go-Solver, MIGOS (S.O.T.A with Japanese rules), and ablation

3 x 3 Go 4 x4 Go b x5 Go
Program Time (s) Nodes Time (s) Nodes Time (h) Nodes
EWS 0.053 161 13.626 495,494 5.252 2,605 M
EWS-WR 0.074 796 40.396 | 1,562,718 > 24 -
EWS-PS 0.070 232 18.320 744,169 > 24 -
Go-Solver 1.299 1,628 51.522 799,607 > 24 -
MIGOS SSK £ F:D ~ 25,118 || ~3,960 | ~3,162 M - -

Solving NxN Hex Boards

- Comparing against:
- Anenhanced alpha beta solver we developed
- Morat Monte Carlo Tree Search
- Morat Proof Number Search

4 x 4 Hex 5 X 5 Hex 6 X 6 Hex
Program Time (s) | Nodes || Time (s) Nodes Time (h) Nodes
EWS 0.002 283 0.253 37,034 0.422 93,963,192
Enhanced AB 0.004 1,673 3.935 698,402 > 24 -
Morat MCTS 0.035 4,644 29.669 3,554,546 > 24 -
Morat PNS 0.054 8,871 || 758.102 | 154,539,591 > 24 -

Thank you for your time!

Questions?

Contact me at: davidowe®@ualberta.ca

References

(1]

(2]

3]

[4

=

[8

[0

[10]

[11]

(12]

Avrus, L., HEriK, H., AND HUNTJENS, M. Go-Moku and Threat-Space
Search. Computational Intelligence 12 (1994), pp. 7-23.

Aruis, L., vAN DER MEULEN, M., AND vAN DEN HERIK, H. Proof-
Number Search. Artificial Intelligence 66, 1 (1994), pp. 91-124.

ANSHELEVICH, V. V. The Game of Hex: An Automatic Theorem Proving
Approach to Game Programming. In AAAI/TAAT 17 (2000), pp. 189-294.

ANSHELEVICH, V. V. A Hierarchical Approach to Computer Hex. Artificial
Intelligence 134, 1 (2002), pp. 101-120.

ARNESON, B., HaywArD, R., AND HENDERSON, P. Solving Hex: Beyond
Humans. In Computers and Games (2010), pp. 1-10.

Bexnson, D. Life in the Game of Go. Information Sciences 10 (1976), pp.
17-29.

Browneg, C. B., PowLEYy, E., WHITEHOUSE, D., Lucas, S. M., CowL-
ING, P. I., ROHLFSHAGEN, P., TAVENER, S., PEREZ, D., SAMOTHRAKIS,
S., AND CoLTON, S. A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and Al in Games 4, 1 (2012),
pp. 1-43.

CampBELL, M. The Graph-History Interaction: On Ignoring Position
History. In ACM Annual Conference on the Range of Computing (1985),
pp. 278-280.

Dok, E., Winanps, M. H. M., KowaLskr, J., SOEMERS, D. J. N. J..
GORrsk1, D., AND BROWNE, C. Proof Number Based Monte-Carlo Tree
Search. In IEEE Conference on Games (2022), pp. 206-212.

Du, H., WeL, T. H., ANpD MULLER, M. Solving NoGo on Small Rectan-
gular Boards. In Advances in Computer Games (2024), Springer Nature
Switzerland, pp. 39-49.

ENZENBERGER, M., MULLER, M., ARNESON, B., AND SecaL, R.
Fuego—An Open-Source Framework for Board Games and Go Engine
Based on Monte Carlo Tree Search. IEEE Transactions on Computational
Intelligence and Al in Games 2 (2011), pp. 259-270.

EwaLps, T. V. Playing and Solving Havannah, 2012. University of Alberta
Master’s Thesis (2012), https://github.com/tewalds/morat.

[l'i] HAYWARD, R., BIORNSSON, Y., JOHANSON, M., KAN, M., Po, N., AND

VAN Ruswiuick, J. Solving 7x7 Hex: Virtual Connections and Game-State
Reduction. Advances in Computer Games: Many Games, Many Challenges
(2004), pp. 261-278.

[14] HENDERSON, P., ARNESON, B., AND HaywarD, R. Solving 8x8 Hex.
LICAI International Joint Conference on Artificial Intelligence (2009), pp.
505-510.

[15] KisnmmoTto, A., AND MULLER, M. A General Solution to the Graph His-
tory Interaction Problem. In Proceedings of the 19th National Conference
on Artifical Intelligence (2004), pp. 644-649.

[16] KisnmvoTto, A., WiNANDS, M., MULLER, M., AND Sarro, J. T. Game-
Tree Search Using Proof Numbers: The First Twenty Years. ICGA Journal
35 (2012), pp. 131-156.

[17] Knuth, D. E., AND MoORE, R. W. An Analysis of Alpha-Beta Pruning.
Artificial Intelligence 6, 4 (1975), pp. 293-326.

[18] Kocsis, L., AND SzePESVARI, C. Bandit Based Monte-Carlo Planning.
In Machine Learning: ECML (2006), pp. 282-293.

[19] MULLER, M. Playing it Safe: Recognizing Secure Territories in Computer
Go by Using Static Rules and Search. In Game Programming Workshop
(1997). pp. 80-86.

[20] Nacar, A. DF-PN Algorithm for Searching AND/OR Trees and its Ap-
plications. University of Tokyo Ph.D. Thesis (2002).

[21] NETO, J. P., AND TAYLOR, W. Game Mutators for Restricting Play.
Game & Puzzle Design (2015), pp. 64-65.

[22] N1v, X., Kisumoro, A., AND MULLER, M. Recognizing Seki in Com-
puter Go. In Advances in Computer Games. 11th International Conference
(2006), vol. 4250 of Lecture Notes in Computer Science, Springer, pp. 88-
103.

[23] N1u, X., AND MOLLER, M. An Improved Safety Solver for Computer Go.
In Computers and Games: jth International Conference (2006), vol. 3846
of Lecture Notes in Computer Science, Springer, pp. 97-112.

[24] N1vu, X., AND MULLER, M. An Open Boundary Safety-of-Territory Solver
for the game of Go. In Computers and Games. 5th International Conference
(2007). vol. 4630 of Lecture Notes in Computer Science, Springer, pp. 37-
49.

[25] N1u, X., AND MULLER, M. An Improved Safety Solver in Go using Partial
Regions. In Computers and Games. 6th International Conference (2008),
vol. 5131 of Lecture Notes in Computer Science. Springer, pp. 102-112.

[26] PawLEWICZ, J., AND HAYWARD, R. B. Scalable Parallel DFPN Search.
In Computers and Games (2013), pp. 138-150.

[27] PawLEwicz, J., AND LEw, L. Improving Depth-First PN-Search: 1 -
Epsilon Trick. In Proceedings of the 5th International Conference on Com-
puters and Games (2006), pp. 160-171.

[28] RanpaLL, O., Wer, T.-H., HAYwarp, R., AND MULLER, M. Improving
Search in Go Using Bounded Static Safety. In Computers and Games
(2022), pp. 14-23.

[29] RosiN, C. Multi-armed Bandits with Episode Context. Annals of Mathe-
matics and Artificial Intelligence 61 (2010), pp. 203-230.

[30] SAFFIDINE, A., AND CAZENAVE, T. Developments on Product Propaga-
tion. In Computers and Games (2013), pp. 100-109.

[31] SCHAEFFER, J., BurcH, N., BIORNSsON, Y., KisHiMoTO, A., MULLER,
M., LAkE, R.. Lu, P.. AND SuTPHEN, S. Checkers is Solved. Science
317, 5844 (2007), pp. 1518-1522.

[32] SCHAEFFER, J., AND PrLaaT, A. New Advances in Alpha-Beta Searching.
In Proceedings of the 1996 ACM 24th annual Conference on Computer
Science (1996), pp. 124-130.

[33] Sum, C.-C., Wu, T.-R., WEeI, T. H., aNpD Wu, 1.-C. A Novel Approach
to Solving Goal-Achieving Problems for Board Games. In Proceedings of the
36th AAAI Conference on Artificial Intelligence (2021), pp. 10362-10369.

[34] SivER, D., Huang, A., MappisoN, C., GUez, A., SIFRE, L., DRIESS-
CHE, G., SCHRITTWIESER, J.. ANTONOGLOU, I., PANNEERSHELVAM, V.,
Lancrot, M., DIELEMAN, S., GREWE, D., NuAM, J., KALCHBRENNER,
N.. SuTskEVER, l., LiLLicrapr, T., LEacH, M., KavukcuoaGLu, K.,
GRAEPEL, T., AND HassaBis, D. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529 (2016), pp. 484-489.

[35] SivEr, D., HUBERT, T., SCHRITTWIESER, J., ANTONOGLOU, I., LAl
M., Guez, A., Lancror, M., SiFrRe, L., KuMARAN, D., GRAEPEL,
T., LiLLicrap, T., SimoNYAN, K., AND HassaBis, D. A General Rein-
forcement Learning Algorithm that Masters Chess, Shogi, and Go through
Self-Play. Science 362, 6419 (2018), pp. 1140-1144.

[36] StaTE, D.. AND ATKIN, L. Chess Skill in Man and Machine. In Springer-
Verlag (1977), pp. 82-118.

[37] SonG, J., AND MULLER, M. An Enhanced Solver for the Game of Ama-
zons. IEEE Transactions on Computational Intelligence and Al in Games
7 (2015), pp. 16-27.

[38] SurTon, R. S., AND BARTO, A. G. Reinforcement Learning: An Intro-
duction. MIT Press (1998), pp. 39-40.

[39] van pErR WERF, E., HERIK, H., AND UITERWLIK, J. Solving Go on Small
Boards. ICGA Journal 26 (2003), pp. 92-107.

[40] van pDER WERF, E., AND WiNanDs, M. Solving Go for Rectangular
Boards. ICGA Journal 32, 2 (2009), pp. 77-88.

[41] WAGNER, J., AND VIRAG, L. Solving Renju. Joint International Computer
Games Association 24 (2001), pp. 30-35.

[42] WiNaNDs, M. H. M., BIJORNsSON, Y., AND Sarro, J.-T. Monte-Carlo
Tree Search Solver. In Computers and Games (2008), pp. 25-36.

[43] Wu, T.-R., Sum, C.-C., Wer, T.-H., Tsar, M.-Y., Hsu, W.-Y., AND
Wu, L-C. AlphaZero-based Proof Cost Network to Aid Game Solving. In

International Conference on Learning Representations (2022).

[44] ZosrisT, A. A New Hashing Method with Application for Game Playing.
ICGA Journal 13 (1990), pp. 69-73.

Conclusion

Expected Work Search combines proof size and win rate estimation

Strong results on Go and Hex

Balances these heuristics
Covers previous weaknesses

Orders of magnitude faster
than tested programs

P ——

Y

New results solving 5x5 Go

Back-

propagation

Future work

Parallelize
Use EW as a problem complexity estimator
Evaluate on more problems

Expansion |«

N——

Selection

A

-
Traverse

nodes

)

Position to

Y

A

\

solve

Solving with Hex Knowledge

- Significantly reduces search space

- 8x8 can be solved

- Search is much slower, but requires less nodes

- More Hex knowledge is required for S.O.T.A.

6 X6 T x 7 8 X 8
Program 6 x 6 Time (s) Nodes Time (s) | Nodes || Time (s) | Nodes
EWS 1,519 93,963,192 - - - -
EWS with knowledge 0.005 26 0.588 2,318 || 234.449 | 555,158

Selection

- Traverse the search tree until a
leaf node is found

- Select the best child according
to the move ordering

- If the selected child has been
expanded, continue selection

- Otherwise, expand the leaf node

Initial Evaluation

Random simulations
Win rates = wins / visits

Initialize EW as the sum of the branching
factors of positions in random simulations

Results

Compared against different independent solving implementations
- GoSolver, MIGOS, Enhanced AB, Morat PNS, Morat MCTS

Ablation study
- Removed proof-size / win-rate information
- Performance drops

Evaluated a variety of Go positions
- Strong general performance
- New results on empty boards

Evaluated empty nxn Hex
- Strong results with and without knowledge

Future Work

- Improved implementation
- Additional games

- Parallelize

- EWS Estimation

- Further solving

- Further evaluation

Objective

Timeline

Refactor to improve code
Rectangular board solving

=64 move game solving

May - June 2024

Solving NoGo
Solving Amazons
Solving Gomoku

Paper on new results

June - September 2024

EWS in parallel workers

EWS in manager program

September - November 2024

Estimating game complexity

Paper on EWS estimation

November - February 2025

Solving 9x9, 10x10 Hex
Solving 6x6 Go
Solving larger NoGo,/Amazons/Gomoku

Paper on new results

February - May 2025

Thorough EWS settings evaluation

May - June 2025

Finish writing thesis

June - September 2025

Improved Implementation

- Refactor

Objective Timeline

Refactor to improve code

- |mprove software qua | Ity Rectangular board solving May - June 2024

>64 move game solving

- Remove artificial limitations
- 64-bit data types limit games with >64 moves
- Go and Hex implementations do not support
rectangular boards

- One month

Additional Games

NoGo
- Compare against new SBH results

Amazons

- Integrate existing endgame databases

Ninuki A B C
- Gomoku variant
- Capturing
- More complicated

Three months

Solving NoGo
Solving Amazons
Solving Gomoku

Paper on new results

June - September 2024

D

— (N] w I o o ~ @)

Parallelization

EWS in parallel workers

EWS in manager program

September - November 2024

Currently running single threaded

Integrate EWS in existing manager-worker program

Use EWS implementation as the worker program
Change manager to use EW and WR info for job selection

Two months

EWS Estimation

Use EW for solving
complexity estimation

Collect a dataset of
solved positions

Use regression

May need to tweak the
EWS implementation /
transform the data

Three months

Estimating game complexity

Paper on EWS estimation

November - February 2025

. 7XT EW | | /
[6.2i ‘
est.
2 6x7 EW ! i
~Bx7
log_10(EW) et
oXS
4x5 R
log_2(Time)

15 20 25

30

Further Solving

Solving 9x9, 10x10 Hex
Solving 6x6 Go

Solving larger NoGo/Amazons/Gomoku

Paper on new results

February - May 2025

Utilize new parallelization and estimation
Solve larger problems

- 6x6 Go

- 9x9, 10x10 Hex

- Other large rectangular boards

- 6x5 Amazons

- 6x6, 7x7 NoGo

Three months

A B € E F
6 6
5 5
4 4
3 3
2 2
1 1

A B c E F

Thorough EWS settings evaluation May - June 2025

Empirical Evaluation

Finish writing thesis June - September 2025

- Hyperparameter sweep

| EWioss(4)/(1-WR(A)) < EWioss(B)/(1-WR(B))
- Test alternate EWS settings

—

- EW nitialization A< B

- Move ordering l

- Asymmetric algorithm EWoss (A) y WR(A) & Emoss(B) ’ WR(B)
—

- Proof Cost Network A<B

- One month

Heuristics

Win rate estimation

- Monte Carlo Tree Search

- Prioritize strong moves

Proof size estimation

- Proof number search

- Prioritize reducing the solution size

Both have strengths and weaknesses

EWS combines both using Expected Work

https://www.365chess.com/board_editor.php

Solving Example

Red = Losses

Green =Wins

Losing positions have all losing

move

Winning positions have at

least one winning move

O

X

O

X

X|X

X|X
0|0

olxIx |

O|X|X

e
olo]x
X|0|0O
x| [x
olo]x
x[o]o

x| [x
o[x
x[o]o

X
o[x
x[o]o

XX

X|0

O|0|X |«
O|X|X

- PNS will choose the

- MCTS will choose the Children:

Search comparison

smallest proof size

highest win rate

Est. proof
- EWS will minimize EW .
: S1Z7C.
- Accounts for proof size
and win rate Est. win

probability:

Implementation

- Allnodes are stored in an unordered table

- Tableis indexed by hashes of game positions

- Zobrist hashing is used

- Tablesizeis 2”22 nodes

- Linear probing is used to resolve hash conflicts

- Nodes are pruned from memory when solved, or if the table is too full

- Current principle variation is never pruned

Baseline Comparison

- Weak baseline: basic negamax algorithm with transposition table
- Strong baseline: Enhanced AB algorithm with:

- Iterative deepening

- Alpha Beta pruning

- A custom heuristic value function for hex

- Transposition table

- The history heuristic

- Killer move heuristic

- Relevancy zones

- Relevancy zone pattern matching

| o) | |

20

log_10(EW)

15 -

log_2(Time)

10 15

20

25

30

EWS ESti matio n Estimating game complexity November - February 2025

Paper on EWS estimation

Use EW for solving 7
complexity estimation IS _7§7_E_)w_ I P | _e_st.

7x6 est.
Collect adatasetof @ 2 | —=—————mmm—e—me e e et e ———

solved positions pwl 6XTEW | 6xg " 0xT est.

Use regression

May need to tweak the
EWS implementation / °
transform the data 4xd

Three months Solving Time

Expansion

For all legal moves:

If the move is a terminal winning
move, the node is solved as a
win

If the move is not terminal,
create a new child node

New nodes evaluate initial win
rate and EW

If the expanded node has no
unsolved children left, it is
solved as a loss

Algorithm 2 Expand X: returns whether X is solved and if
so whether X is winning

1: X.expanded := true
2: for all legal moves m do
3 if m is a terminal winning move for X then
4 return true, true > Solved win
5: else if m is not a terminal losing move for X then
6 Create node C
7 C.expanded = false
8 C.move :=m
9: Evaluate C'.winRate
10: Evaluate C.expectedWorkLoss
11: Evaluate C.expectedWorkWin
12: Add C to X .children
13: if X .children is empty then
14: return true, false > Solved loss
15: else

16: return false, false > Unsolved

Bounded Static Safety

BSS LAP | Benson || BSS BSS BSS no
Type BSS | LAP |Benson +search | +search|-+search|| no EL | no IP | EL no IP
Av. first
sl 27.29 | 31.66 | 42.67 14.89 16.35 17.79 30.83 | 27.73 31.28

-— N w £ (4] o ~ @ 0

A B (0] D E F G H J

A B © D E F G H J

A B c D E F G H o

—_ N w N (6] o ~ @ 0

= N w IS o o ~ © ©

— N w IS [6)] o ~

— N w I [6)) o ~

— N w IS ()] o ~ (oc] O

A B C D E

F G H J

—_ N w 5 (6 o ~ oo O

— N w 4 (6)] o ~ oo O

— N w IS (&) (o)) ~ oo O

— N w SN (6)] o ~ (oo} O

— N w SN (6)] o ~ o O

F

A B C D E

— N w IS (©)] (o)) ~ (00] O

— N w 5 (@) o ~ oo O

Relative va

Absolute values

G

F

A B C D E

G

F

A B C D E

Absolute values Relative values

EY

o e

G2

(a) IRGs of Fig. 3a

A5

14

B7

2
14

F7

3
11

G2

-3

(b) Corresponding value trees

00 o

12

A6

11

A5

Solve rate

Solve rate by move number

— BSS

— LAP

—— Benson

-—-=- BSS+search

-== LAP+search

—-== Benson+search
BSS no EL

—-= BSS no IP

—-= BSS no EL no IP

10 15 20 25 30
Move number

35 40 45

