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AlphaGo and Alpha Zero

• Famous series of DeepMind game-playing programs, 
2014-18 

• AlphaGo, AlphaGo Zero, AlphaZero 

• Later MuZero, Stochastic MuZero 

• Super-human play in Go, chess, shogi 

• Inspired many other programs and generalisations 

• Strong open source programs: Leela chess zero, KataGo



How Do these Programs Work?
• Train deep neural net 

• Policy  = move generator 

• Value = state evaluation 

• Deep selective search:  
Monte Carlo Tree Search (MCTS) with PUCT  

• Grow a deep search tree shaped by policy and 
value 

• Training: self-play and reinforcement learning 

• Learns network from millions of games  
 - from random to super-human



How Good are These Programs?

• Overwhelming success  

• against human players: Lee Sedol, Ke Jie, … 

• against previous engines such as “plain” MCTS, 
alphabeta-based engines, previous AlphaGo 

• In chess, on par with sophisticated alphabeta 
search using “simple+fast” NNUE networks 

• Open source Stockfish program with NNUE



Are the Current Programs Unbeatable?

• Short answer: No 

• First evidence: self-play results. Both Black and White player wins games 

• With optimal play, this cannot happen 

• Either one player wins all games, or 

• all games are draws 

• Second evidence: adversarial attacks (next slide) 

• Third evidence: our work on endgames presented here



Adversarial Attacks

• Can “trick” KataGo into losing a game 

• First attack: exploit implementation bug 

• Bug: passes when far ahead, even though that 
loses immediately 

• Oversight of the programmer, easy fix 

• Second attack: blindness against surrounding, 
“cyclic attack”



Adversarial Attacks - Some References

• Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I-Chen Wu, Cho-Jui Hsieh.  
Are AlphaZero-like Agents Robust to Adversarial Perturbations?  
NeurIPS 2022 

• Finbarr Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid, Neil Burch, Julian 
Schrittwieser, Thomas Hubert, Michael Bowling  
Approximate Exploitability: Learning a Best Response 
IJCAI 2022 

• Tony T. Wang, Adam Gleave, Tom Tseng, Kellin Pelrine, Nora Belrose, Joseph Miller, Michael D. 
Dennis, Yawen Duan, Viktor Pogrebniak, Sergey Levine, Stuart Russell 
Adversarial Policies Beat Superhuman Go AIs 
ICLR 2023



Motivation for Our Work
• Can we beat these programs “fairly”, without tricks? 

• Can we estimate how close to perfect play they are? 

• In general: no. 

• Chess, Go, shogi…openings and middle games are much too complicated 

• No human or computer knows what perfect play is 

• In specific endgame situations: yes! 

• Chess: endgame databases with pre-computed perfect play 

• Go: endgame puzzles with mathematical “sum of games” structure



Related Publications From Our Group
• R. Haque, T.-h. Wei and M. Müller.  

On the Road to Perfection? Evaluating LeelaChess Zero Against Endgame Tablebases.  
Advances in Computer Games (ACG 2021). 

• R. Haque.  
On the Road to Perfection? Evaluating LeelaChess Zero Against Endgame Tablebases.  
MSc thesis, University of Alberta, 2021. 

• Q. A. Sadmine, A. Husna, and M. Müller.  
Stockfish or Leela Chess Zero? A Comparison Against Endgame Tablebases.  
Advances in Computer Games (ACG) 2023. 

• A. Husna.  
Analyzing KataGo: A comparative evaluation against perfect play in the game of Go.  
MSc thesis, University of Alberta, 2024. 

From: https://webdocs.cs.ualberta.ca/~mmueller/publications.html



General Research Questions

• How close to perfection is AlphaZero? 

• There is evidence that shows AlphaZero still makes mistakes 

• Deeper analysis  

• Goal: better understanding of AlphaZero limitations



Part 1 -  
Chess



Chess Endgame Tablebases

• Chess: pieces are captured during the game 

• Endgame: only few pieces remain 

• Can build complete databases “tablebases” with perfect 
play (minimax) result 

• State of the art: 

• All positions with 7 or fewer pieces completed 

• 8 piece positions under construction (huge…) 

• Results and strategy far beyond human understanding



Chess Endgame Databases We Used

• Idea: start with simplest databases 

• Check how program plays 

• Tested all “non-trivial” 3 and 4 piece databases 

• Example of 3 piece: King + Rook vs King 

• Example of 4 piece: King + Queen vs King + Pawn 

• One difficult 5 piece database: King, Queen, Rook vs King and Queen 

• Much larger database - used a random sample of 1% of all positions



The Program: Leela Chess Zero

• Leela Chess Zero (Lc0) 

• Open source chess program 

• Re-implementation of Alpha Zero ideas 

• Adds other improvements such as auxiliary outputs 

• Trained by large group of volunteers, who donate computer resources 

• One of the strongest open source programs 

• We used version Lc0 0.27 on “modest” hardware (1 Nvidia Titan RTX)



Specific Research Questions

• How well does Lc0 play in these endgame positions? 

• What is the influence of network training? 

• Strong network vs intermediate (less training) 

• What is the influence of search? 

• Raw network vs Monte Carlo Tree Search (PUCT) 

• Can we find specific types of mistakes? Can we explain them?



Weak vs Strong Network

• Strong network: best up to May 2021 

• Program strength (with search) 3062 Elo, superhuman 

• Weak network: after 60 generations of training 

• Rating 1717 Elo



How do we Define a Mistake?

• Mistake: a bad move that changes the game-theoretic outcome 

• Best move leads to draw, but the program’s move loses 

• Best move leads to a win, but program’s move loses or draws 

• (If best move leads to loss: ignore the position) 

• Other more detailed measures are possible 

• Win in the minimal number of moves 

• Not used here



Overall Results - 3 and 4 Piece Positions
• 3 Piece: easy 

•  Weak network without 
search makes a few 
mistakes 

• 4 Piece 

• Strong network: 20-80x 
fewer mistakes 

• Some mistakes remain 

• Search solves most, not all



Overall Results - 5 Piece Positions

• KQRkq - King+Queen+Rook vs King+Queen 

• Over 200 million positions 

• Randomly sampled 1% for analysis, discard 
losses 

• 683022 wins, 147694 draws 

• Raw network, and small MCTS searches 

• Draws are much harder to play 

• More search again gives strong 
improvement



Comparing Search Errors - 3 vs 4 vs 5 Pieces



Decision Depth

• Decision depth: a rough measure of difficulty of a move decision 

• Winning move: Distance to mate (with best opponent play) 

• Drawing move: Longest distance to mate for other, losing moves



Errors vs Decision Depth

• Policy only (no search) 
makes some blunders at 
very low decision depth 

• Even a small search  
is very powerful 

• All errors at decision 
depths below 35 
disappear



Some Interesting Mistakes

• Policy errors 

• Search errors 

• Search making things worse 

• Why do these mistakes happen?



Example - Bad Policy, Easy Search

• Qg1 wins 

• Qa1 only draws 

• Policy: Qa1 has higher probability 

• Search: very easy to see that Qg1 is correct 

• Value after 1 move is already much higher



Easy Search - Progress

• Qg1 quickly becomes best move 

• Dominates in both Q value and 
UCB value Q+U 

• Almost all simulations explorer 
Qg1



Bad Policy, Difficult for Search

• Kd3 and Kd5 win 

• Kc3 is only a draw 

• Both policy and (small) search prefer 
Kc3 

• Search needs 12000 simulations to 
switch to a correct move



Difficult for Search - Early Progress

• Red = bad move Kc3 

• Blue and green = good moves 

• Within 6000 simulations, search 
cannot see that red move is bad



Part 2 -  
Go
• Differences from chess to Go 

• The KataGo program 

• Endgame puzzles and Decomposition Search 

• Experiments and Results 

• Discussion



From Chess to Go

• Chess: game becomes simplified in endgame, 
“converging game” 

• Fewer pieces, fewer positions 

• Can build complete tablebases 

• Go: game does not become simpler, “diverging game” 

• Cannot build databases 

• How to evaluate perfectly?



Solving Go Positions

• How can we solve Go? 

• Of course, regular Go is much too hard 

• We can solve only in special cases: 

• Small boards, 5x5, 6x6, 7x7 killall Go 

• Endgames with special mathematical structure 

• AlphaZero type programs play very strongly, but not perfect 

• In this work, we test AlphaZero type program KataGo 
against a perfect player in Go endgames



KataGo

• Strongest open source Go program  

• Based on AlphaZero  

• Improvements  

• Better training efficiency 

• Can play different board sizes, 
komi, rules 

• Auxiliary targets: territory 
ownership and score



Combinatorial Game Theory (CGT)

• Mathematical theory for games 

• Applies to games that consist of independent 
subgames 

• Can solve some of these games very efficiently 

• Much faster than “full-board” minimax search 

• Find optimal play in a sum game  

• A game that consists of independent subgames 

• Examples: Nim, Go endgames 



Decomposition Search

• A game tree search method based on 
combinatorial game theory (Müller 1995) 

• Application: Go endgames  

• Identify subgames  

• Local combinatorial games search  

• Find the combinatorial game evaluations 

• Select optimal moves 



Go Endgame Problems
• E. Berlekamp and D. Wolfe, Mathematical Go: 

Chilling gets the last point (1994) 

• Original set of 22 problems, White wins by 1/2 
point in all cases 

• Human analysis of Go endgames 

• Independence of subgames verified by hand 

• Modified problems:  

• Same endgame values 

• Territories modified to allow computer 
analysis 

• Can be solved by Decomposition Search



Extend Dataset - Perfect Games

• Start with modified problems C.1, C.2, C.3, C.6, 
C.7, C.8, C.9, C.10, and C.21 

• Use exact solver self-play to generate one full 
game 

• Adjust the komi when a stone is captured.  

• A total of 126 more test positions 

• Exact solver used to create set of all optimal 
moves in each position

Start of a “perfect game”



Experiment - Testing KataGo on Endgames
• Similar to chess experiment 

• Two versions of neural network, strong and weak 

• Strong: 18 blocks and 384 channels 

• Weak: 6 blocks and 96 channels, less training 

• Run KataGo with and without search 

• Generate a move, check if it is in set of optimal 
moves 

• (Not in this talk: two different definitions of optimal 
moves)

KataGo with KaTrain Interface



Summary of Results - No search

• Many problems are 
difficult for KataGo 
policy



Examples of Policy Errors
• Left side 

• Two valuable moves 

• Value are similar but different 

• Only D7 wins 

• Kata Go policy prefers E1 

• Right side 

• Much simpler case, KataGo 
policy is wrong 

• KataGo likes capturing moves 
too much

Difficult case                           Simpler case



KataGo with Small Search

• 100 nodes 
search 

• All results 
improve a bit 

• Still a number of 
errors remain



Scaling Up the Search

• Each data point = 
double the search 

• From 100 to >100k 
nodes 

• Small improvements, 
not consistent 

• Many problems are 
still unsolved



Playing Matches between Exact Solver and KataGo

• 120 positions from “perfect games”  

• White wins by 0.5 points in each case 

• Exact Solver vs KataGo, 100 nodes 

• Exact Solver is white: 120 wins 

• KataGo is white: 109 wins, 11 losses 

• Example: KataGo loses



Example: Scaling to Larger Search

• Blue move on K1: only winning move 

• Red moves: losing moves 

• Policy network:  

• 10% on blue move 

•  35%, 17%, 11% on the three red (losing) moves 

• Extend search up to 200k nodes 

• Never finds blue move,  

• Search switches between three red moves



Same Example - Far from Solved…

• Winrate around 
30-34% 

• True winrate should 
be 100% 

• Cannot separate 
winning move K1 
from losing moves



Example: a Very Simple Error in Early Training

• Example with Weak policy 

• Only 3 points remain 

• Very simple case, D7 is better 

• Policy net likes G9 better…



Summary
• Are Alpha Zero type programs close to perfect play? 

• Two case studies, chess and Go 

• Clear answer: No 

• Very strong playing performance, far beyond human 

• Limitations seen in difficult game positions for which we have exact, perfect information 

• Chess endgame tablebases 

• Go endgame puzzles 

• Search using a strong network cannot overcome mathematical analysis 

• A lesson for other applications where strong guarantees of correctness are needed? 

• Medicine, engineering of safety-critical systems, …


