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NoGo

* Blocks
e Liberties

 All blocks must have at least one liberty

 Capturing and suicide are not allowed

* Game ends when a player has no move to make



Linear NoGo

* NoGo played on 1 X n boards

e X —black
* 0 — white
° . —empty

O. .XXO.X.
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Previous Work — SBHSolver

* Du, H., Wei, T.H., Miiller, M.: Solving NoGo on small rectangular
boards. In: Advances in Computer Games. (2023)

* SBHSolver:

* Boolean Negamax

 Sorted Bucket Hash transposition table
* Enhanced transposition cutoff

* History heuristic

* No CGT enhancements!



A New Solver for Linear NoGo

* CGTSolver: Boolean Negamax + CGT
* Block Simplification & xo-Split

* Static evaluation

* Pre-computed database

* Play-In-The-Middle (PITM) heuristic
* Transposition table



Block Simplification

Theorem 1. A block of stones of the same color can be replaced by a
single stone of that color.

O..XXXO.XX. — OOOXO.X.

Proof sketch. The set of legal moves does not change.



x0-Split

Theorem 2. A Linear NoGo game can be split into two independent
subgames at the boundary between two blocks of opposite colors.

O. . XXX0.XX. = 0..XXX + 0.XX.

Proof sketch. A move played on the left does not affect the liberties, and
the set of legal moves, on the right.



Cancellation of Subgames
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Reduced Position

Definition 1. A Linear NoGo position 1s called reduced 1f neither block
simplification nor xo-split can be applied.



Search Trees — Classical vs CGTSolver’s

*
L4

e topiay [0"XX°'X'] \ {0 X + 0.X J
(I n n games

[OO.XXO.X.]

[OO.XXO.XX]




Static Evaluation

X O.X0..0X. = X..0.X + 0..0 + X.

v e e e o

G H, H, Hj;
OutcomeClass(H;) = N Next player wins
OutcomeClass(H,) = R White wins
OutcomeClass(H;) = P Previous player wins

N+ R+ P =N+ R
If White goes next, White wins.



Pre-computed Database

Theorem 3. For all n > 0, there are 3"*1 distinct reduced positions
with n empty points.

Proof sketch. A reduced position does not contain adjacent stones of the
same color (block simplification) or opposite color (xo-split).

Reduced positions with 3 empty points: _ . _

.X.. O.X.. X.O.X. 0.0.0.X



Pre-computed Database

* Organized by layers fromn = 1 to 15
* All reduced positions with up to 15 empty points
71i5=1 3"+l = 64,570,077 positions/entries

» <board, outcome class, pointer to simplest equal game>



Simplest Equal Games

Given a Linear NoGo position G, its simplest equal game s(G) 1s
defined to be the game that

(1) 1s equal to G, and
(2) appears earliest in the database.

e.0.X.0..X = ..
&
G s(G)

* During search, replace G by s(G).



Finding Stmplest Equal Games

To find the simplest equal game of a position G,
for each game H; before G 1n the database,
we sequentially test by search 1if ¢ — H; = 0.



Transposition Table

* Anode1s Gy + G, + -

* Encode the board of each subgame G; as a string

* Sort board strings

* Concatenate sorted strings with separator symbols in between

S — ° ° | X ° ° ° O |
* Zobrist hashing Black | RP||R5,|R53|RP4| R®sR%s|RP7| Rg|R5g
« RBRW RE R white (R |R7,|RV5|R7 4 |R 5| R7 o|R7 - |[RW| R
[ J — Si
h(S) — 691' Ri Empty RE1 RE2 RE3 RE4 RE5 RE6 RE7 RE8 RE9
Seperator R|l R|2 R|3 R|4 R|5 R|6 R|7 R|8 R|9




Solving Linear NoGo — New Results

* 12 new results — 1X28 to 1xX39
 Black wins by play the B1 opening move

Fig. 3: The opening moves on empty 1 x n NoGo with 28 < n < 33. A black
(white) stone indicates a winning (losing) opening move.



Solving Linear NoGo

Performance curves of Linear NoGo solvers in nodes

Performance curves of Linear NoGo solvers in time
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Fig. 2: Performance comparison of SBHSolver and CGTSolver for solving 1 x n
NoGo with the B1 opening. The graphs are logl0-scaled on the y-axis.



Ablation Study
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Fig. 4: Ablation on components of CGTSolver: the PITM heuristic, replacement
with simplest equal games, static evaluation, and transposition table (TT).



Statistics on Search Tree and Subgames
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Fig. 5: Statistics in solving 1 x 30 NoGo with B1 opening: the number of nodes
and leaf nodes across depths, the number of nodes and leaf nodes having different
numbers of subgames,



Conclusions & Future work

* 12 new results on solving Linear NoGo: board size of 28 to 39
* A CGT-enhanced solver
* More statistics and details 1n the paper.

e For 2D NoGo,
* Block Simplification works on any graph

* Decomposition from Shan, Y.C.: Solving Games and Improving
Search Performance with Embedded Combinatorial Game Knowledge.






Occurrences of Simplest Equal Games in DB
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500 +

400 -

300 -

200 A

100 -

Frequency of CGT games in database n<=8

20

40

60

80

CGT game index

100

idx| board |canonical form|occurrences
0| .x.x.0. 1% 481
1 * 457
2 - +1 424
3 .X.0. +(1%) 341
4 .X.X. {2|1} 326
5 .X. 1 310
6| .x.X.X. 3 287
7 |.x.Xx.X.0. 2% 284
8 . 0 282
9 .X. {1|0} 268
10 X.X 2 256

Table 1: The 11 most frequent simplest
equal games in the n < 8 database.

: iy
Fig.6: The number of occurrences of the most mverses removed

frequent simplest equal games in the database.



Simplest Equal Games

::)ue tO ComPUtatiOn COnStraintS, idx| board [|canonical form|occurrences
0| .x.x.o0. 1% 481
: : — 1 .. * 457
Full simplest equal games up ton = 8 o M ot
N 3| .. .x.0. +(1%) 341
Partial for9 < n < 15 o a1} 326
5 .X. 1 310
6| .x.x.x%. 3 287
7 .x.x.X.0. 2% 284
8 . 0 282
9 .. X. {1|0} 268
10 X.X 2 256

Table 1: The 11 most frequent simplest
equal games in the n < 8 database.




PITM Heuristic

* Play-In-The-Middle
* Try moves closer to the middle of a subgame first.

* Move ordering:

* From largest to the smallest in length, using PITM 1n each subgame.

* Quickly break down a large game into smaller subgames.
* Increase the chance of database hits.



Comparison with CGSuite

* CGSuite 1s not efficient for solving Linear NoGo

* Needs to compute canonical forms

* 1X16 board has a massive canonical form with 1,201,194 stops!

 CGTSuite took over 8 minutes to solve.
 CGTSolver, without database, took less than 30 milliseconds.



