Solving NoGo on Small Rectangular Boards

Haoyu Du, Ting Han Wei, Martin Müller

University of Alberta

Contributions

- Sorted Bucket Hash (SBH)
- Solutions of NoGo on boards with up to 27 points
- Statistics and human-understandable strategies of NoGo

Plan

- Background of NoGo
- Sorted Bucket Hash
- Strategies for playing 4x4 & 5x5 NoGo

Plan

Background of NoGo

- Sorted Bucket Hash
- Strategies for playing 4x4 & 5x5 NoGo

Rules

- Two players, Black going first
- Block connected stones
- Liberties

All blocks must always have at least one liberty

Rules

- Two players, Black going first
- Block connected stones
- Liberties

- All blocks must always have at least one liberty
- The game ends when a player has no legal move to play
- This player is deemed the loser

Previous work

- Pohsuan She, 2013
- 5x5 NoGo
- All 6 openings are wins for Black

She, P.: The Design and Study of NoGo Program. Master's thesis, National Chiao Tung University (2013)

Previous work

- Tristan Cazenave, 2020
- Up to 25 points

	1	2	3	4	5	6	7	8	9	10
1	2	1	1	2	1	1	1	1	1	1
2	1	1	2	2	1	1	1	1	2	2
3	1	2	1	2	1	1	1	1		
4	2	2	2	2	1	1				
5	1	1	1	1	1					
6	1	1	1	1						
7	1	1	1							
8	1	1	1							
9	1	2								
10	1	2								

Table 3: Winner for Nogo boards of various sizes

Cazenave, T.: Monte carlo game solver.

In: Monte Carlo Search, MCS 2020. (2021)

Plan

- Background of NoGo
- Sorted Bucket Hash

• Strategies for playing 4x4 & 5x5 NoGo

Sorted Bucket Hash (SBH)

Motivations:

- Weakly solving games
- Perfect hashing
- Memory footprint (32GB)

SBH – calculating hashcode

SBH – transposition table

SBH – calculating hashcode

SBH – transposition table

SBH – find operation

SBH – store operation

SBH – efficiency gains

• 5x5 NoGo

• She, 2013 520 x 10⁹ points

• Cazenave, 2020 46 x 10⁹ moves

• **SBHSolver** 3 x 10⁹ game positions

Plan

- Background of NoGo
- Sorted Bucket Hash
- Strategies for playing 4x4 & 5x5 NoGo

- White wins
- Strategy for White: playing symmetrically

- White wins
- Strategy for White: playing symmetrically

- White wins
- Strategy for White: playing symmetrically
- It is the winning move for 85.3%

- White wins
- Strategy for White: playing symmetrically
- It is the winning move for 85.3%

5x5 NoGo

- Black wins
- Strategy for Black: making eyes

5x5 NoGo

- Black wins
- Strategy for Black: making eyes

- In solution of A1 opening,
- 45.2% of the endgame positions contain any eyes

5x5 NoGo

- Black wins
- Another strategy:
- creating long blocks to separate the opponent's stones

What's more

- Implement choices for SBH
- Performance of SBH
- More findings of 5x5 NoGo
- Solutions of 1xn NoGo, $n \le 27$
- Two general results for 1xn NoGo

Future Work

- Solve larger boards
- Two-tier storage scheme (memory + disk)

• Improve the efficiency of find and store operations

Hashcode, Index, & Validation Code

•
$$2^{39} < 3^{25} < 2^{40}$$

• k = 40 hashcode

• m = 30 index

• n = 10 validation code

